Machine Learning Pocket Reference Working with Structured Data in Python (機器學習口袋參考)
Harrison, Matt
- 出版商: O'Reilly
- 出版日期: 2019-10-08
- 定價: $880
- 售價: 9.5 折 $836
- 貴賓價: 9.0 折 $792
- 語言: 英文
- 頁數: 200
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1492047546
- ISBN-13: 9781492047544
-
相關分類:
Machine Learning
-
相關翻譯:
機器學習常用算法速查手冊 (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,600$1,520 -
$450$356 -
$420$328 -
$1,715Interaction Design : Beyond Human-Computer Interaction, 5/e (Paperback)
-
$2,160R Cookbook : Proven Recipes for Data Analysis, Statistics, and Graphics, 2/e
-
$380$300 -
$580$458 -
$500$395 -
$360$284 -
$650$514 -
$690$587 -
$1,200$1,020 -
$780$616 -
$1,995$1,890 -
$500$390 -
$580$458 -
$650$514 -
$500$390 -
$505Visual Studio Code 權威指南
-
$2,090$1,980 -
$750$593 -
$1,980$1,881 -
$320$253 -
$480$379 -
$880$695
相關主題
商品描述
With detailed notes, tables, and examples, this handy reference will help you navigate the basics of structured machine learning. Author Matt Harrison delivers a valuable guide that you can use for additional support during training and as a convenient resource when you dive into your next machine learning project.
Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. You'll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics.
This pocket reference includes sections that cover:
- Classification, using the Titanic dataset
- Cleaning data and dealing with missing data
- Exploratory data analysis
- Common preprocessing steps using sample data
- Selecting features useful to the model
- Model selection
- Metrics and classification evaluation
- Regression examples using k-nearest neighbor, decision trees, boosting, and more
- Metrics for regression evaluation
- Clustering
- Dimensionality reduction
- Scikit-learn pipelines
商品描述(中文翻譯)
這本便攜參考書提供了詳細的註解、表格和範例,幫助您掌握結構化機器學習的基礎知識。作者Matt Harrison提供了一本寶貴的指南,您可以在培訓過程中作為額外的支援,並在下一個機器學習項目中作為方便的資源。
這本書適合程式設計師、資料科學家和人工智慧工程師閱讀,其中包括機器學習流程的概述,並引導您進行結構化數據的分類。您還將學習到聚類、預測連續值(回歸)和降維等其他主題的方法。
這本便攜參考書包含以下部分:
- 使用Titanic數據集進行分類
- 數據清理和處理缺失數據
- 探索性數據分析
- 使用示例數據的常見預處理步驟
- 選擇對模型有用的特徵
- 模型選擇
- 指標和分類評估
- 使用k最近鄰、決策樹、提升等方法進行回歸分析的示例
- 回歸評估指標
- 聚類
- 降維
- Scikit-learn流程
這本書將成為您在機器學習領域的寶貴資源,幫助您更好地應對各種挑戰。
作者簡介
Matt runs MetaSnake, a Python and Data Science training and consulting company. He has over 15 years of experience using Python across a breadth of domains: Data Science, BI, Storage, Testing and Automation, Open Source Stack Management, and Search.
作者簡介(中文翻譯)
Matt經營MetaSnake,一家提供Python和數據科學培訓和諮詢服務的公司。他在Python的使用上擁有超過15年的經驗,涵蓋了多個領域:數據科學、商業智能、存儲、測試和自動化、開源堆棧管理以及搜索。