此商品已下架,若仍需天瓏代為查詢或代購書籍,請與門市客服人員聯繫,或 E-mail 至 service@tenlong.com.tw 將有專人為您服務。

Neural Network Design, 2/e (Paperback)
暫譯: 神經網絡設計(第二版)

Martin T Hagan, Howard B Demuth, Mark H Beale, Orlando De Jesús

買這商品的人也買了...

商品描述

This book, by the authors of the Neural Network Toolbox for MATLAB, provides a clear and detailed coverage of fundamental neural network architectures and learning rules. In it, the authors emphasize a coherent presentation of the principal neural networks, methods for training them and their applications to practical problems. Features Extensive coverage of training methods for both feedforward networks (including multilayer and radial basis networks) and recurrent networks. In addition to conjugate gradient and Levenberg-Marquardt variations of the backpropagation algorithm, the text also covers Bayesian regularization and early stopping, which ensure the generalization ability of trained networks. Associative and competitive networks, including feature maps and learning vector quantization, are explained with simple building blocks. A chapter of practical training tips for function approximation, pattern recognition, clustering and prediction, along with five chapters presenting detailed real-world case studies. Detailed examples and numerous solved problems. Slides and comprehensive demonstration software can be downloaded from hagan.okstate.edu/nnd.html.

商品描述(中文翻譯)

這本書由 MATLAB 的神經網路工具箱的作者撰寫,提供了對基本神經網路架構和學習規則的清晰且詳細的介紹。在書中,作者強調了主要神經網路的連貫呈現、訓練方法及其在實際問題中的應用。特點包括對前饋網路(包括多層網路和徑向基底網路)和遞迴網路的訓練方法的廣泛覆蓋。除了共軛梯度法和 Levenberg-Marquardt 變體的反向傳播演算法外,文本還涵蓋了貝葉斯正則化和早期停止,這些方法確保了訓練網路的泛化能力。關聯網路和競爭網路,包括特徵圖和學習向量量化,則用簡單的基本構件進行解釋。書中還有一章提供了功能近似、模式識別、聚類和預測的實用訓練技巧,以及五章詳細介紹現實案例研究的章節。書中包含詳細的範例和大量已解決的問題。幻燈片和全面的演示軟體可以從 hagan.okstate.edu/nnd.html 下載。