Machine Learning and Security: Protecting Systems with Data and Algorithms
暫譯: 機器學習與安全:利用數據和算法保護系統

Clarence Chio, David Freeman

買這商品的人也買了...

商品描述

Can machine learning techniques solve our computer security problems and finally put an end to the cat-and-mouse game between attackers and defenders? Or is this hope merely hype? The best way to find out is to dive into the science and do lots of testing and experimentation. With this practical guide, you’ll explore ways to apply machine learning to security issues such as intrusion detection, malware classification, and network analysis.

Machine learning and security specialists Clarence Chio and David Freeman provide a framework for discussing the marriage of these two fields, as well as a toolkit of machine-learning algorithms that you can apply to an array of security problems. This book is ideal for security engineers and data scientists alike.

  • Learn how machine learning has contributed to the success of modern spam filters
  • Quickly detect anomalies, including breaches, fraud, and impending system failure
  • Conduct malware analysis by extracting useful information from computer binaries
  • Uncover attackers within the network by finding patterns inside datasets
  • Examine how attackers exploit consumer-facing websites and app functionality
  • Translate your machine learning algorithms from the lab to production
  • Understand the threat attackers pose to machine learning solutions

商品描述(中文翻譯)


機器學習技術能否解決我們的電腦安全問題,並最終結束攻擊者與防禦者之間的貓鼠遊戲?還是這種希望僅僅是炒作?了解這一點的最佳方法是深入科學,進行大量測試和實驗。通過這本實用指南,您將探索如何將機器學習應用於安全問題,例如入侵檢測、惡意軟體分類和網路分析。

機器學習和安全專家 Clarence Chio 和 David Freeman 提供了一個框架,用於討論這兩個領域的結合,以及一套可以應用於各種安全問題的機器學習算法工具包。本書非常適合安全工程師和數據科學家。


  • 了解機器學習如何促進現代垃圾郵件過濾器的成功

  • 快速檢測異常,包括違規、詐騙和即將發生的系統故障

  • 通過從計算機二進位檔中提取有用信息來進行惡意軟體分析

  • 通過在數據集中尋找模式來揭露網路中的攻擊者

  • 檢查攻擊者如何利用面向消費者的網站和應用功能

  • 將您的機器學習算法從實驗室轉移到生產環境

  • 了解攻擊者對機器學習解決方案構成的威脅