Mastering Machine Learning for Penetration Testing
暫譯: 精通滲透測試的機器學習
Chiheb Chebbi
- 出版商: Packt Publishing
- 出版日期: 2018-06-27
- 售價: $1,840
- 貴賓價: 9.5 折 $1,748
- 語言: 英文
- 頁數: 276
- 裝訂: Paperback
- ISBN: 1788997409
- ISBN-13: 9781788997409
-
相關分類:
Python、程式語言、Machine Learning
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$908惡意代碼分析實戰
-
$779$740 -
$1,362Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies (Hardcover)
-
$354$336 -
$3,190$3,031 -
$352物聯網設備安全 (Abousing the Internet of Things)
-
$1,340$1,273 -
$2,210$2,100 -
$454物聯網滲透測試 (Iot Penetration Testing Cookbook)
-
$690$538 -
$880$695 -
$1,200$948 -
$505內網安全攻防 : 滲透測試實戰指南
-
$403基於數據科學的惡意軟件分析
-
$1,200$948 -
$600$468 -
$1,000$790 -
$607深度強化學習:基於 Python 的理論及實踐
-
$374Web 漏洞搜索 (Real-World Bug Hunting : A Field Guide to Web Hacking)
-
$450$355 -
$414$393 -
$880$695 -
$414$393 -
$650$507 -
$720$568
商品描述
Become a master at penetration testing using machine learning with Python
Key Features
- Identify ambiguities and breach intelligent security systems
- Perform unique cyber attacks to breach robust systems
- Learn to leverage machine learning algorithms
Book Description
Cyber security is crucial for both businesses and individuals. As systems are getting smarter, we now see machine learning interrupting computer security. With the adoption of machine learning in upcoming security products, it's important for pentesters and security researchers to understand how these systems work, and to breach them for testing purposes.
This book begins with the basics of machine learning and the algorithms used to build robust systems. Once you've gained a fair understanding of how security products leverage machine learning, you'll dive into the core concepts of breaching such systems. Through practical use cases, you'll see how to find loopholes and surpass a self-learning security system.
As you make your way through the chapters, you'll focus on topics such as network intrusion detection and AV and IDS evasion. We'll also cover the best practices when identifying ambiguities, and extensive techniques to breach an intelligent system.
By the end of this book, you will be well-versed with identifying loopholes in a self-learning security system and will be able to efficiently breach a machine learning system.
What you will learn
- Take an in-depth look at machine learning
- Get to know natural language processing (NLP)
- Understand malware feature engineering
- Build generative adversarial networks using Python libraries
- Work on threat hunting with machine learning and the ELK stack
- Explore the best practices for machine learning
Who this book is for
This book is for pen testers and security professionals who are interested in learning techniques to break an intelligent security system. Basic knowledge of Python is needed, but no prior knowledge of machine learning is necessary.
Table of Contents
- Introduction to Machine Learning in Pentesting
- Phishing Domain Detection
- Malware Detection with API Calls and PE Headers
- Malware Detection with Deep Learning
- Botnet Detection with Machine Learning
- Machine Learning in Anomaly Detection Systems
- Detecting Advanced Persistent Threats
- Evading Intrusion Detection Systems with Adversarial Machine Learning
- Bypass machine learning malware Detectors
- Best Practices for Machine Learning and Feature Engineering
- Assessments
商品描述(中文翻譯)
使用 Python 和機器學習成為滲透測試的專家
主要特點
- 識別模糊性並突破智能安全系統
- 執行獨特的網路攻擊以突破堅固系統
- 學習如何利用機器學習演算法
書籍描述
網路安全對於企業和個人來說至關重要。隨著系統變得更加智能,我們現在看到機器學習正在干擾計算機安全。隨著機器學習在即將推出的安全產品中的應用,滲透測試者和安全研究人員了解這些系統的運作方式並進行測試性突破變得非常重要。
本書從機器學習的基本概念和用於構建堅固系統的演算法開始。一旦你對安全產品如何利用機器學習有了相當的理解,你將深入探討突破這些系統的核心概念。通過實際案例,你將學會如何找到漏洞並超越自學的安全系統。
在你逐章閱讀的過程中,你將專注於網路入侵檢測、反病毒和入侵檢測系統的規避等主題。我們還將涵蓋識別模糊性的最佳實踐,以及突破智能系統的廣泛技術。
在本書結束時,你將熟悉如何識別自學安全系統中的漏洞,並能夠有效地突破機器學習系統。
你將學到什麼
- 深入了解機器學習
- 了解自然語言處理 (NLP)
- 理解惡意軟體特徵工程
- 使用 Python 函式庫構建生成對抗網路
- 利用機器學習和 ELK 堆疊進行威脅獵捕
- 探索機器學習的最佳實踐
本書適合誰
本書適合對學習突破智能安全系統技術感興趣的滲透測試者和安全專業人士。需要具備基本的 Python 知識,但不需要具備機器學習的先前知識。
目錄
- 滲透測試中的機器學習介紹
- 釣魚域名檢測
- 使用 API 調用和 PE 標頭的惡意軟體檢測
- 使用深度學習的惡意軟體檢測
- 使用機器學習的僵屍網路檢測
- 異常檢測系統中的機器學習
- 檢測高級持續威脅
- 使用對抗性機器學習規避入侵檢測系統
- 繞過機器學習惡意軟體檢測器
- 機器學習和特徵工程的最佳實踐
- 評估