Python Data Science Handbook: Essential Tools for Working with Data (Paperback) (Python 數據科學手冊:數據處理的基本工具)
Jake VanderPlas
- 出版商: O'Reilly
- 出版日期: 2017-01-03
- 定價: $2,450
- 售價: 5.0 折 $1,225
- 語言: 英文
- 頁數: 548
- 裝訂: Paperback
- ISBN: 1491912057
- ISBN-13: 9781491912058
-
相關分類:
Python、程式語言、Data Science
-
相關翻譯:
Python 資料科學學習手冊 (Python Data Science Handbook: Essential Tools for Working with Data) (繁中版)
-
其他版本:
Python Data Science Handbook: Essential Tools for Working with Data, 2/e (Paperback)
買這商品的人也買了...
-
$2,025$1,924 -
$150$143 -
$1,218R in Action: Data Analysis and Graphics with R, 2/e (Paperback)
-
$650$553 -
$780$616 -
$360$284 -
$630$630 -
$580$452 -
$1,107The Hitchhiker's Guide to Python: Best Practices for Development (Paperback)
-
$680$530 -
$580$458 -
$590$502 -
$2,020$1,919 -
$580$458 -
$500$395 -
$580$458 -
$520$411 -
$1,680Python in a Nutshell: A Desktop Quick Reference, 3/e (Paperback)
-
$790$616 -
$450$356 -
$590$460 -
$390$332 -
$480$379 -
$580$458 -
$780$616
相關主題
商品描述
The Python Data Science Handbook provides a reference to the breadth of computational and statistical methods that are central to data-intensive science, research, and discovery. People with a programming background who want to use Python effectively for data science tasks will learn how to face a variety of problems: e.g., how can I read this data format into my script? How can I manipulate, transform, and clean this data? How can I visualize this type of data? How can I use this data to gain insight, answer questions, or to build statistical or machine learning models?
This book is a reference for day-to-day Python-enabled data science, covering both the computational and statistical skills necessary to effectively work with . The discussion is augmented with frequent example applications, showing how the wide breadth of open source Python tools can be used together to analyze, manipulate, visualize, and learn from data.
商品描述(中文翻譯)
Python資料科學手冊提供了一個參考,涵蓋了與資料密集型科學、研究和發現相關的計算和統計方法的廣度。具有程式設計背景且希望有效地使用Python進行資料科學任務的人將學習如何應對各種問題:例如,我如何將這個資料格式讀入我的腳本?我如何操作、轉換和清理這個資料?我如何視覺化這類資料?我如何利用這個資料獲取洞察、回答問題或建立統計或機器學習模型?
這本書是日常Python資料科學的參考,涵蓋了有效處理資料所需的計算和統計技能。討論中還附有頻繁的實例應用,展示了如何將各種開源Python工具結合使用來分析、操作、視覺化和從資料中學習的廣泛範例。