Interpreting Machine Learning Models: Learn Model Interpretability and Explainability Methods
暫譯: 解讀機器學習模型:學習模型可解釋性與解釋方法

Nandi, Anirban, Pal, Aditya Kumar

  • 出版商: Apress
  • 出版日期: 2021-12-16
  • 售價: $2,250
  • 貴賓價: 9.5$2,138
  • 語言: 英文
  • 頁數: 368
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1484278011
  • ISBN-13: 9781484278017
  • 相關分類: Machine Learning
  • 海外代購書籍(需單獨結帳)

商品描述

Chapter 1: Introduction to Machine Learning DomainChapter Goal: The book's opening chapter will talk about the journey of machine learning models and why model interpretability became so important in the recent times. This chapter will also cover some of the basic black box modelling algorithms in brief Sub-Topics: - Journey of machine learning domain- Journey of machine learning algorithms - Why only reporting accuracy is not enough for models
Chapter 2: Introduction to Model InterpretabilityChapter Goal: This chapter will talk about the importance and need of interpretability and how businesses employ model interpretability for their decisionsSub-Topics: - Why is interpretability needed for machine learning models- Motivation behind using model interpretability- Understand social and commercial motivations for machine learning interpretability, fairness, accountability, and transparency- Get a definition of interpretability and learn about the groups leading interpretability research
Chapter 3: Machine Learning Interpretability TaxonomyChapter Goal: A machine learning taxonomy is presented in this section. This will be used to characterize the interpretability of various popular machine learning techniques.Sub topics: - Understanding and trust- A scale for interpretability- Global and local interpretability- Model-agnostic and model-specific interpretability
Chapter 4: Common Properties of Explanations Generated by Interpretability MethodsChapter goal: The purpose of this chapter to explain readers about evaluation metrics for various interpretability methods. This will help readers understand which methods to choose for specific use cases
Sub topics: - Degree of importance - Stability- Consistency - Certainty- Novelty
Chapter 5: Timeline of Model interpretability Methods DiscoveryChapter goal: This chapter will talk about the timeline and will give details about when most common methods of interpretability were discovered
Chapter 6: Unified Framework for Model ExplanationsChapter goal: Each method is determined by three choices: how it handles features, what model behavior it analyzes, and how it summarizes feature influence. The chapter will focus in detail about each step and will try to map different methods to each step by giving detailed examplesSub topics1: - Removal based explanations- Summarization based explanations
Chapter 7: Different Types of Removal Based ExplanationsChapter goal: This chapter will talk about the different types of removal based methods and how to implement them along with details of examples and Python packages, real life use cases etc.Sub topics: - IME(2009)- IME(2010)- QII- SHAP- KernelSHAP- TreeSHAP- LossSHAP- SAGE- Shapley- Shapley- Permutation- Conditional- Feature- Univariate- L2X- INVASE- LIME- LIME- PredDiff- Occlusion- CXPlain- RISE- MM- MIR- MP- EP- FIDO-CA
Chapter 8: Different Types of Summarization Based ExplanationsChapter goal: This chapter will talk about the different types of summarization based methods and how to implement them along with details of examples and python p

商品描述(中文翻譯)

第 1 章:機器學習領域簡介
章節目標:本書的開篇章節將討論機器學習模型的發展歷程,以及為何模型可解釋性在近期變得如此重要。本章還將簡要介紹一些基本的黑箱建模算法。
子主題:
- 機器學習領域的發展歷程
- 機器學習算法的發展歷程
- 為何僅報告準確率對模型來說是不夠的

第 2 章:模型可解釋性簡介
章節目標:本章將討論可解釋性的重要性及其必要性,以及企業如何利用模型可解釋性來做出決策。
子主題:
- 為何機器學習模型需要可解釋性
- 使用模型可解釋性的動機
- 理解機器學習可解釋性、公平性、問責性和透明度的社會及商業動機
- 獲得可解釋性的定義,並了解領導可解釋性研究的團體

第 3 章:機器學習可解釋性分類法
章節目標:本節將介紹機器學習的分類法,這將用於描述各種流行機器學習技術的可解釋性。
子主題:
- 理解與信任
- 可解釋性的尺度
- 全局與局部可解釋性
- 與模型無關的可解釋性和特定模型的可解釋性

第 4 章:可解釋性方法生成的解釋的共同特性
章節目標:本章的目的是向讀者解釋各種可解釋性方法的評估指標。這將幫助讀者理解在特定用例中應選擇哪些方法。
子主題:
- 重要性程度
- 穩定性
- 一致性
- 確定性
- 新穎性

第 5 章:模型可解釋性方法發現的時間線
章節目標:本章將討論時間線,並詳細介紹最常見的可解釋性方法何時被發現。

第 6 章:模型解釋的統一框架
章節目標:每種方法由三個選擇決定:如何處理特徵、分析什麼模型行為以及如何總結特徵影響。本章將詳細聚焦於每個步驟,並通過詳細示例嘗試將不同方法映射到每個步驟。
子主題:
- 基於移除的解釋
- 基於總結的解釋

第 7 章:不同類型的基於移除的解釋
章節目標:本章將討論不同類型的基於移除的方法,以及如何實施它們,並提供示例和 Python 套件、實際用例等的詳細資訊。
子主題:
- IME(2009)
- IME(2010)
- QII
- SHAP
- KernelSHAP
- TreeSHAP
- LossSHAP
- SAGE
- Shapley
- Permutation
- Conditional
- Feature
- Univariate
- L2X
- INVASE
- LIME
- PredDiff
- Occlusion
- CXPlain
- RISE
- MM
- MIR
- MP
- EP
- FIDO-CA

第 8 章:不同類型的基於總結的解釋
章節目標:本章將討論不同類型的基於總結的方法,以及如何實施它們,並提供示例和 Python 套件的詳細資訊。