Quality Estimation for Machine Translation (Synthesis Lectures on Human Language Technologies)
暫譯: 機器翻譯的品質評估(人類語言技術綜合講座)
Lucia Specia, Carolina Scarton, Gustavo Henrique Paetzold
- 出版商: Morgan & Claypool
- 出版日期: 2018-09-25
- 售價: $2,410
- 貴賓價: 9.5 折 $2,290
- 語言: 英文
- 頁數: 162
- 裝訂: Paperback
- ISBN: 1681733730
- ISBN-13: 9781681733739
海外代購書籍(需單獨結帳)
商品描述
Many applications within natural language processing involve performing text-to-text transformations, i.e., given a text in natural language as input, systems are required to produce a version of this text (e.g., a translation), also in natural language, as output. Automatically evaluating the output of such systems is an important component in developing text-to-text applications. Two approaches have been proposed for this problem: (i) to compare the system outputs against one or more reference outputs using string matching-based evaluation metrics and (ii) to build models based on human feedback to predict the quality of system outputs without reference texts. Despite their popularity, reference-based evaluation metrics are faced with the challenge that multiple good (and bad) quality outputs can be produced by text-to-text approaches for the same input. This variation is very hard to capture, even with multiple reference texts. In addition, reference-based metrics cannot be used in production (e.g., online machine translation systems), when systems are expected to produce outputs for any unseen input. In this book, we focus on the second set of metrics, so-called Quality Estimation (QE) metrics, where the goal is to provide an estimate on how good or reliable the texts produced by an application are without access to gold-standard outputs. QE enables different types of evaluation that can target different types of users and applications. Machine learning techniques are used to build QE models with various types of quality labels and explicit features or learnt representations, which can then predict the quality of unseen system outputs. This book describes the topic of QE for text-to-text applications, covering quality labels, features, algorithms, evaluation, uses, and state-of-the-art approaches. It focuses on machine translation as application, since this represents most of the QE work done to date. It also briefly describes QE for several other applications, including text simplification, text summarization, grammatical error correction, and natural language generation.
商品描述(中文翻譯)
許多自然語言處理的應用涉及執行文本到文本的轉換,即給定一段自然語言的文本作為輸入,系統需要生成該文本的另一個版本(例如,翻譯),同樣以自然語言作為輸出。自動評估這些系統的輸出是開發文本到文本應用的重要組成部分。對於這個問題,已提出兩種方法:(i)使用基於字符串匹配的評估指標將系統輸出與一個或多個參考輸出進行比較,以及(ii)基於人類反饋構建模型,以預測系統輸出的質量,而不需要參考文本。儘管這些基於參考的評估指標很受歡迎,但面臨的挑戰是,文本到文本的方法對於相同的輸入可以產生多個良好(和不良)質量的輸出。即使有多個參考文本,這種變化也很難捕捉。此外,當系統預期為任何未見過的輸入生成輸出時,基於參考的指標無法在生產環境中使用(例如,線上機器翻譯系統)。在本書中,我們專注於第二組指標,即所謂的質量估計(Quality Estimation, QE)指標,其目標是在無法訪問金標準輸出的情況下,提供對應用生成的文本的好壞或可靠性的估計。QE使得不同類型的評估成為可能,能夠針對不同類型的用戶和應用。機器學習技術被用來構建QE模型,這些模型使用各種質量標籤和明確特徵或學習到的表示,然後可以預測未見系統輸出的質量。本書描述了文本到文本應用的QE主題,涵蓋質量標籤、特徵、算法、評估、用途和最先進的方法。它專注於機器翻譯作為應用,因為這代表了迄今為止大多數的QE工作。它還簡要描述了幾個其他應用的QE,包括文本簡化、文本摘要、語法錯誤修正和自然語言生成。