Advanced Forecasting with Python: With State-Of-The-Art-Models Including Lstms, Facebook's Prophet, and Amazon's Deepar
暫譯: 使用 Python 進行高級預測:包含最先進模型如 LSTMs、Facebook 的 Prophet 和 Amazon 的 DeepAR
Korstanje, Joos
相關主題
商品描述
Chapter 1: Models for ForecastingChapter Goal: Explains the different categories of models that are relevant for forecasting in high level languageNo pages: 10Sub -Topics1. Time series models2. Supervised vs unsupervised models3. Classification vs regression models4. Univariate vs multivariate models
Chapter 2: Model Evaluation for ForecastingChapter Goal: Explains model evaluation with specific adaptations to keep in mind for forecastingNo pages: 15Sub -Topics1. Train test split2. Cross validation for forecasting3. Backtesting
PART II: Univariate Time Series Models
Chapter 3: The AR ModelChapter Goal: explain the AR model (intuitively, mathematically and give python application with code and data set)No pages: 8Sub -Topics1. Understanding AR model2. Mathematical explanation of the AR model3. Worked out Python forecasting example with the AR model
Chapter 4: The MA modelChapter Goal: explain the MA model (intuitively, mathematically and give python application with code and data set)No pages: 8Sub -Topics1. Understanding MA model2. Mathematical explanation of the MA model3. Worked out Python forecasting example with the MA model
Chapter 5: The ARMA modelChapter Goal: explain the ARMA model (intuitively, mathematically and give python application with code and data set)No pages: 8Sub -Topics1. Understanding ARMA model2. Mathematical explanation of the ARMA model3. Worked out Python forecasting example with the ARMA model
Chapter 6: The ARIMA modelChapter Goal: Explains the ARIMA model (intuitively, mathematically and give python application with code and data set)No pages: 8Sub -Topics1. Understanding ARIMA model2. Mathematical explanation of the ARIMA model3. Worked out Python forecasting example with the ARIMA model
Chapter 7: The SARIMA ModelChapter Goal: Explains the SARIMA model (intuitively, mathematically and give python application with code and data set)No pages: 8Sub -Topics1. Understanding SARIMA model2. Mathematical explanation of the SARIMA model3. Worked out Python forecasting example with the SARIMA model
PART III: Multivariate Time Series Models
Chapter 8: The VAR modelChapter Goal: Explains the VAR model (intuitively, mathematically and give python application with code and data set)No pages: 8Sub -Topics1. Understanding VAR model2. Mathematical explanation of the VAR model3. Worked out Python forecasting example with the VAR model
Chapter 9: The Bayesian VAR modelChapter Goal: Explains the Bayesian VAR model (intuitively, mathematically and give python application with code and data set)No pages: 8Sub -Topics1. Understanding Bayesian VAR model2. Mathematical explanation of the Bayesian VAR model3. Worked out Python forecasting example with the Bayesian VAR model
PART IV: Supervised Machine Learning Models
Chapter 10: The Linear Regression modelChapter Goal: Explains the Linear Regression model (intuitively, mathematically and give python application with code and data set)No pages: 8Sub -Topics1. Understanding Linear Regression model
商品描述(中文翻譯)
第一部分:機器學習預測
第1章:預測模型
章節目標:解釋與預測相關的不同類別模型
頁數:10
子主題:
1. 時間序列模型
2. 監督式與非監督式模型
3. 分類模型與回歸模型
4. 單變量模型與多變量模型
第2章:預測模型評估
章節目標:解釋模型評估,並針對預測的特定調整進行說明
頁數:15
子主題:
1. 訓練測試分割
2. 預測的交叉驗證
3. 回測
第二部分:單變量時間序列模型
第3章:自回歸模型(AR模型)
章節目標:解釋自回歸模型(直觀、數學上並提供Python應用程式及代碼和數據集)
頁數:8
子主題:
1. 理解AR模型
2. AR模型的數學解釋
3. 使用AR模型的Python預測範例
第4章:移動平均模型(MA模型)
章節目標:解釋移動平均模型(直觀、數學上並提供Python應用程式及代碼和數據集)
頁數:8
子主題:
1. 理解MA模型
2. MA模型的數學解釋
3. 使用MA模型的Python預測範例
第5章:自回歸移動平均模型(ARMA模型)
章節目標:解釋自回歸移動平均模型(直觀、數學上並提供Python應用程式及代碼和數據集)
頁數:8
子主題:
1. 理解ARMA模型
2. ARMA模型的數學解釋
3. 使用ARMA模型的Python預測範例
第6章:自回歸整合移動平均模型(ARIMA模型)
章節目標:解釋自回歸整合移動平均模型(直觀、數學上並提供Python應用程式及代碼和數據集)
頁數:8
子主題:
1. 理解ARIMA模型
2. ARIMA模型的數學解釋
3. 使用ARIMA模型的Python預測範例
第7章:季節性自回歸整合移動平均模型(SARIMA模型)
章節目標:解釋季節性自回歸整合移動平均模型(直觀、數學上並提供Python應用程式及代碼和數據集)
頁數:8
子主題:
1. 理解SARIMA模型
2. SARIMA模型的數學解釋
3. 使用SARIMA模型的Python預測範例
第三部分:多變量時間序列模型
第8章:向量自回歸模型(VAR模型)
章節目標:解釋向量自回歸模型(直觀、數學上並提供Python應用程式及代碼和數據集)
頁數:8
子主題:
1. 理解VAR模型
2. VAR模型的數學解釋
3. 使用VAR模型的Python預測範例
第9章:貝葉斯向量自回歸模型(Bayesian VAR模型)
章節目標:解釋貝葉斯向量自回歸模型(直觀、數學上並提供Python應用程式及代碼和數據集)
頁數:8
子主題:
1. 理解Bayesian VAR模型
2. Bayesian VAR模型的數學解釋
3. 使用Bayesian VAR模型的Python預測範例
第四部分:監督式機器學習模型
第10章:線性回歸模型
章節目標:解釋線性回歸模型(直觀、數學上並提供Python應用程式及代碼和數據集)
頁數:8
子主題:
1. 理解線性回歸模型
作者簡介
Joos is a data scientist, with over five years of industry experience in developing machine learning tools, of which a large part is forecasting models. He currently works at Disneyland Paris where he develops machine learning for a variety of tools. His experience in writing and teaching have motivated him to make this book on advanced forecasting with Python.
作者簡介(中文翻譯)
Joos 是一位數據科學家,擁有超過五年的行業經驗,專注於開發機器學習工具,其中很大一部分是預測模型。他目前在巴黎迪士尼樂園工作,負責為各種工具開發機器學習。他在寫作和教學方面的經驗激勵他撰寫這本關於使用 Python 進行高級預測的書籍。