Computational Trust Models and Machine Learning (Hardcover)
暫譯: 計算信任模型與機器學習 (精裝版)

Xin Liu, Anwitaman Datta, Ee-Peng Lim

  • 出版商: CRC
  • 出版日期: 2014-11-04
  • 售價: $3,465
  • 貴賓價: 9.5$3,292
  • 語言: 英文
  • 頁數: 232
  • 裝訂: Hardcover
  • ISBN: 1482226669
  • ISBN-13: 9781482226669
  • 相關分類: Machine Learning
  • 立即出貨 (庫存=1)

買這商品的人也買了...

商品描述

Computational Trust Models and Machine Learning provides a detailed introduction to the concept of trust and its application in various computer science areas, including multi-agent systems, online social networks, and communication systems. Identifying trust modeling challenges that cannot be addressed by traditional approaches, this book:

  • Explains how reputation-based systems are used to determine trust in diverse online communities
  • Describes how machine learning techniques are employed to build robust reputation systems
  • Explores two distinctive approaches to determining credibility of resources—one where the human role is implicit, and one that leverages human input explicitly
  • Shows how decision support can be facilitated by computational trust models
  • Discusses collaborative filtering-based trust aware recommendation systems
  • Defines a framework for translating a trust modeling problem into a learning problem
  • Investigates the objectivity of human feedback, emphasizing the need to filter out outlying opinions

Computational Trust Models and Machine Learning effectively demonstrates how novel machine learning techniques can improve the accuracy of trust assessment.

商品描述(中文翻譯)

《計算信任模型與機器學習》詳細介紹了信任的概念及其在多代理系統、在線社交網絡和通信系統等各個計算機科學領域的應用。該書識別了傳統方法無法解決的信任建模挑戰,內容包括:

- 解釋如何使用基於聲譽的系統來確定多樣化在線社區中的信任
- 描述如何運用機器學習技術來構建穩健的聲譽系統
- 探索兩種不同的資源可信度判斷方法——一種是人類角色隱含的,另一種是明確利用人類輸入的
- 展示如何通過計算信任模型來促進決策支持
- 討論基於協同過濾的信任感知推薦系統
- 定義將信任建模問題轉化為學習問題的框架
- 研究人類反饋的客觀性,強調需要過濾掉極端意見

《計算信任模型與機器學習》有效展示了新穎的機器學習技術如何提高信任評估的準確性。