Introduction to Scientific Programming and Simulation Using R, 2/e (Hardcover)
暫譯: 使用 R 進行科學程式設計與模擬導論,第二版 (精裝版)

Owen Jones, Robert Maillardet, Andrew Robinson

  • 出版商: CRC
  • 出版日期: 2014-06-12
  • 售價: $3,790
  • 貴賓價: 9.5$3,601
  • 語言: 英文
  • 頁數: 606
  • 裝訂: Hardcover
  • ISBN: 1466569999
  • ISBN-13: 9781466569997
  • 相關分類: R 語言數值分析 Numerical-analysis程式語言
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

商品描述

Learn How to Program Stochastic Models

 

Highly recommended, the best-selling first edition of Introduction to Scientific Programming and Simulation Using R was lauded as an excellent, easy-to-read introduction with extensive examples and exercises. This second edition continues to introduce scientific programming and stochastic modelling in a clear, practical, and thorough way. Readers learn programming by experimenting with the provided R code and data.

 

The book’s four parts teach:

 

 

  • Core knowledge of R and programming concepts
  • How to think about mathematics from a numerical point of view, including the application of these concepts to root finding, numerical integration, and optimisation
  • Essentials of probability, random variables, and expectation required to understand simulation
  • Stochastic modelling and simulation, including random number generation and Monte Carlo integration

 

In a new chapter on systems of ordinary differential equations (ODEs), the authors cover the Euler, midpoint, and fourth-order Runge-Kutta (RK4) schemes for solving systems of first-order ODEs. They compare the numerical efficiency of the different schemes experimentally and show how to improve the RK4 scheme by using an adaptive step size.

 

Another new chapter focuses on both discrete- and continuous-time Markov chains. It describes transition and rate matrices, classification of states, limiting behaviour, Kolmogorov forward and backward equations, finite absorbing chains, and expected hitting times. It also presents methods for simulating discrete- and continuous-time chains as well as techniques for defining the state space, including lumping states and supplementary variables.

 

Building readers’ statistical intuition, Introduction to Scientific Programming and Simulation Using R, Second Edition shows how to turn algorithms into code. It is designed for those who want to make tools, not just use them. The code and data are available for download from CRAN.

商品描述(中文翻譯)

學習如何編程隨機模型

 

強烈推薦,暢銷的第一版使用 R 的科學編程與模擬導論被譽為一本優秀且易讀的入門書籍,包含大量範例和練習。本書的第二版繼續以清晰、實用和徹底的方式介紹科學編程和隨機建模。讀者通過實驗提供的 R 代碼和數據來學習編程。

 

本書的四個部分教授:

 


  • R 語言和編程概念的核心知識

  • 如何從數值的角度思考數學,包括這些概念在根尋找、數值積分和優化中的應用

  • 理解模擬所需的概率、隨機變數和期望的基本知識

  • 隨機建模和模擬,包括隨機數生成和蒙地卡羅積分

 

在一個關於常微分方程(ODE)系統的新章節中,作者介紹了用於解決一階 ODE 系統的歐拉法、中點法和四階龍格-庫塔(RK4)法。他們實驗比較了不同方案的數值效率,並展示了如何通過使用自適應步長來改進 RK4 方法。

 

另一個新章節專注於離散時間和連續時間的馬爾可夫鏈。它描述了轉移矩陣和速率矩陣、狀態的分類、極限行為、科爾莫哥洛夫前向和後向方程、有限吸收鏈和期望到達時間。它還介紹了模擬離散時間和連續時間鏈的方法,以及定義狀態空間的技術,包括狀態的合併和補充變數。

 

通過建立讀者的統計直覺,使用 R 的科學編程與模擬導論,第二版展示了如何將算法轉化為代碼。它旨在為那些想要製作工具而不僅僅是使用工具的人設計。代碼和數據可從 CRAN 下載。