Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites (Paperback)
暫譯: 挖掘社交網路:分析來自 Facebook、Twitter、LinkedIn 及其他社交媒體網站的數據 (平裝本)
Matthew A. Russell
- 出版商: O'Reilly
- 出版日期: 2011-02-11
- 售價: $1,590
- 貴賓價: 9.5 折 $1,511
- 語言: 英文
- 頁數: 356
- 裝訂: Paperback
- ISBN: 1449388345
- ISBN-13: 9781449388348
已過版
買這商品的人也買了...
-
$1,107Bioinformatics: The Machine Learning Approach, 2/e (Hardcover)
-
$2,550$2,423 -
$890$846 -
$1,780$1,691 -
$600$588 -
$1,558Introduction to Algorithms, 3/e (IE-Paperback)
-
$750$638 -
$820$648 -
$560$476 -
$1,320Data Analysis with Open Source Tools (Paperback)
-
$480$470 -
$520$411 -
$550$435 -
$850$723 -
$580$458 -
$950$808 -
$600$468 -
$760Java How to Program, 9/e (IE-Paperback)
-
$1,302Mahout in Action (Paperback)
-
$299Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data (Paperback)
-
$680$530 -
$520$411 -
$1,386Machine Learning in Action (Paperback)
-
$2,350$2,233 -
$1,620$1,539
商品描述
Facebook, Twitter, and LinkedIn generate a tremendous amount of valuable social data, but how can you find out who's making connections with social media, what they’re talking about, or where they’re located? This concise and practical book shows you how to answer these questions and more. You'll learn how to combine social web data, analysis techniques, and visualization to help you find what you've been looking for in the social haystack, as well as useful information you didn't know existed.
Each standalone chapter introduces techniques for mining data in different areas of the social Web, including blogs and email. All you need to get started is a programming background and a willingness to learn basic Python tools.
- Get a straightforward synopsis of the social web landscape
- Use adaptable scripts on GitHub to harvest data from social network APIs such as Twitter, Facebook, and LinkedIn
- Learn how to employ easy-to-use Python tools to slice and dice the data you collect
- Explore social connections in microformats with the XHTML Friends Network
- Apply advanced mining techniques such as TF-IDF, cosine similarity, collocation analysis, document summarization, and clique detection
- Build interactive visualizations with web technologies based upon HTML5 and JavaScript toolkits
商品描述(中文翻譯)
Facebook、Twitter 和 LinkedIn 產生了大量有價值的社交數據,但你如何能找出誰在社交媒體上建立聯繫、他們在談論什麼或他們的位置在哪裡?這本簡明實用的書籍將教你如何回答這些問題及更多。你將學會如何結合社交網絡數據、分析技術和可視化,幫助你在社交數據的海堆中找到你一直在尋找的資訊,以及一些你不知道存在的有用信息。
每一章都是獨立的,介紹了在社交網絡的不同領域(包括部落格和電子郵件)挖掘數據的技術。你所需的只是編程背景和學習基本 Python 工具的意願。
- 獲得社交網絡全景的簡明概述
- 使用 GitHub 上的可調整腳本從社交網絡 API(如 Twitter、Facebook 和 LinkedIn)中收集數據
- 學習如何使用易於使用的 Python 工具來處理和分析你收集的數據
- 使用 XHTML Friends Network 探索微格式中的社交連結
- 應用高級挖掘技術,如 TF-IDF、餘弦相似度、搭配分析、文檔摘要和社群檢測
- 基於 HTML5 和 JavaScript 工具包構建互動式可視化
「來自社交網絡的數據是不同的:網絡和文本,而不是表格和數字,才是規則,熟悉的查詢語言被快速發展的網絡服務 API 所取代。讓 Matthew Russell 成為你在處理舊的(電子郵件、部落格)和新的(Twitter、LinkedIn、Facebook)社交數據集時的指導者。《挖掘社交網絡》是《編程集體智慧》的自然接班人:一種實用的、動手的方式,使用 Python 對社交網絡數據進行黑客攻擊。」-- Jeff Hammerbacher