Bioinformatics: The Machine Learning Approach, 2/e (Hardcover)
暫譯: 生物資訊學:機器學習方法(第二版,精裝本)
Pierre Baldi, Søren Brunak
- 出版商: MIT
- 出版日期: 2001-07-20
- 售價: $1,107
- 語言: 英文
- 頁數: 476
- 裝訂: Hardcover
- ISBN: 026202506X
- ISBN-13: 9780262025065
-
相關分類:
Machine Learning、生物資訊 Bioinformatics
已絕版
買這商品的人也買了...
-
$1,200$1,176 -
$980$774 -
$970Introduction to Algorithms, 2/e
-
$690$587 -
$1,100$1,078 -
$590$466 -
$780$616 -
$720$569 -
$580$458 -
$560$476 -
$490$387 -
$450$351 -
$850$723 -
$480$379 -
$750$593 -
$720$569 -
$780$616 -
$580$493 -
$490$382 -
$780$616 -
$490$387 -
$680$537 -
$480$379 -
$580$458 -
$580$458
商品描述
An unprecedented
wealth of data is being generated by genome sequencing projects and other
experimental efforts to determine the structure and function of biological
molecules. The demands and opportunities for interpreting these data are
expanding rapidly. Bioinformatics is the development and application of computer
methods for management, analysis, interpretation, and prediction, as well as for
the design of experiments. Machine learning approaches (e.g., neural networks,
hidden Markov models, and belief networks) are ideally suited for areas where
there is a lot of data but little theory, which is the situation in molecular
biology. The goal in machine learning is to extract useful information from a
body of data by building good probabilistic models--and to automate the process
as much as possible.
In this book Pierre Baldi and Søren Brunak present
the key machine learning approaches and apply them to the computational problems
encountered in the analysis of biological data. The book is aimed both at
biologists and biochemists who need to understand new data-driven algorithms and
at those with a primary background in physics, mathematics, statistics, or
computer science who need to know more about applications in molecular
biology.
This new second edition contains expanded coverage of
probabilistic graphical models and of the applications of neural networks, as
well as a new chapter on microarrays and gene expression. The entire text has
been extensively revised.
Table of Contents
1 Introduction
SAMPLE CHAPTER -
DOWNLOAD PDF (1.33 MB)
2 Machine-Learning Foundations: The
Probabilistic Framework
3 Probabilistic Modeling and
Inference: Examples
4 Machine Learning Algorithms
5 Neural Networks: The Theory
6 Neural
Networks: Applications
7 Hidden Markov Models: The
Theory
8 Hidden Markov Models: Applications
9 Probabilistic Graphical Models in Bioinformatics
10 Probabilistic Models of Evolution: Phylogenetic Trees
11 Stochastic Grammars and Linguistics
12
Microarrays and Gene Expression
13 Internet Resources and
Public Databases
A Statistics
B Information Theory, Entropy, and Relative Entropy
C Probabilistic Graphical Models
D
HMM Technicalities, Scaling, Periodic Architectures, State Functions, and
Dirichlet Mixtures
E Gaussian Processes, Kernel
Methods, and Support Vector Machines
F Symbols and
Abbreviations
Reference
商品描述(中文翻譯)
前所未有的數據量正在由基因組測序項目和其他實驗性努力生成,以確定生物分子的結構和功能。解釋這些數據的需求和機會正在迅速擴大。生物資訊學是開發和應用計算機方法來管理、分析、解釋和預測數據,以及設計實驗。機器學習方法(例如,神經網絡、隱馬可夫模型和信念網絡)非常適合數據量龐大但理論較少的領域,這正是分子生物學的情況。機器學習的目標是通過建立良好的概率模型從數據中提取有用的信息,並盡可能自動化這一過程。
在本書中,Pierre Baldi 和 Søren Brunak 介紹了關鍵的機器學習方法,並將其應用於生物數據分析中遇到的計算問題。本書的目標讀者包括需要了解新數據驅動算法的生物學家和生物化學家,以及那些主要背景為物理學、數學、統計學或計算機科學的讀者,他們需要了解在分子生物學中的應用。
這本新修訂的第二版擴展了對概率圖模型和神經網絡應用的涵蓋範圍,並新增了一章關於微陣列和基因表達。整個文本已經過廣泛修訂。
目錄
1 介紹
樣本章節 - 下載 PDF (1.33 MB)
2 機器學習基礎:概率框架
3 概率建模與推斷:範例
4 機器學習算法
5 神經網絡:理論
6 神經網絡:應用
7 隱馬可夫模型:理論
8 隱馬可夫模型:應用
9 生物資訊學中的概率圖模型
10 演化的概率模型:系統發育樹
11 隨機文法與語言學
12 微陣列與基因表達
13 網際網路資源與公共數據庫
A 統計學
B 資訊理論、熵與相對熵
C 概率圖模型
D HMM 技術細節、縮放、周期架構、狀態函數與狄利克雷混合
E 高斯過程、核方法與支持向量機
F 符號與縮寫
參考文獻