Iterative Learning Control for Deterministic Systems (Advances in Industrial Control)
暫譯: 確定性系統的迭代學習控制(工業控制進展)

Kevin L. Moore

  • 出版商: Springer
  • 出版日期: 2011-12-12
  • 售價: $2,420
  • 貴賓價: 9.5$2,299
  • 語言: 英文
  • 頁數: 152
  • 裝訂: Paperback
  • ISBN: 1447119142
  • ISBN-13: 9781447119142
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Iterative Learning Control for Deterministic Systems is part of the new Advances in Industrial Control series, edited by Professor M.J. Grimble and Dr. M.A. Johnson of the Industrial Control Unit, University of Strathclyde. The material presented in this book addresses the analysis and design of learning control systems. It begins with an introduction to the concept of learning control, including a comprehensive literature review. The text follows with a complete and unifying analysis of the learning control problem for linear LTI systems using a system-theoretic approach which offers insight into the nature of the solution of the learning control problem. Additionally, several design methods are given for LTI learning control, incorporating a technique based on parameter estimation and a one-step learning control algorithm for finite-horizon problems. Further chapters focus upon learning control for deterministic nonlinear systems, and a time-varying learning controller is presented which can be applied to a class of nonlinear systems, including the models of typical robotic manipulators. The book concludes with the application of artificial neural networks to the learning control problem. Three specific ways to neural nets for this purpose are discussed, including two methods which use backpropagation training and reinforcement learning. The appendices in the book are particularly useful because they serve as a tutorial on artificial neural networks.

商品描述(中文翻譯)

確定性系統的迭代學習控制》是新系列《工業控制的進展》的一部分,由斯特拉斯克萊德大學工業控制單位的M.J. Grimble教授和M.A. Johnson博士編輯。本書所呈現的材料針對學習控制系統的分析與設計。內容首先介紹學習控制的概念,包括全面的文獻回顧。接下來的文本對線性LTI系統的學習控制問題進行了完整且統一的分析,採用系統理論的方法,提供了對學習控制問題解決方案本質的深入見解。此外,書中還提供了幾種LTI學習控制的設計方法,這些方法包括基於參數估計的技術和針對有限時間範圍問題的一步學習控制算法。後續章節專注於確定性非線性系統的學習控制,並介紹了一種可應用於一類非線性系統的時間變化學習控制器,包括典型機器人操作器的模型。書籍最後探討了人工神經網絡在學習控制問題中的應用,討論了三種特定的神經網絡方法,包括兩種使用反向傳播訓練和強化學習的方法。本書的附錄特別有用,因為它們作為人工神經網絡的教程。