Reinforcement Learning for Optimal Feedback Control: A Lyapunov-Based Approach (Communications and Control Engineering)
暫譯: 最佳反饋控制的強化學習:基於Lyapunov的方法 (通訊與控制工程)

Rushikesh Kamalapurkar, Patrick Walters, Joel Rosenfeld, Warren Dixon

  • 出版商: Springer
  • 出版日期: 2018-05-28
  • 售價: $6,600
  • 貴賓價: 9.5$6,270
  • 語言: 英文
  • 頁數: 293
  • 裝訂: Hardcover
  • ISBN: 3319783831
  • ISBN-13: 9783319783833
  • 相關分類: ReinforcementDeepLearning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Reinforcement Learning for Optimal Feedback Control develops model-based and data-driven reinforcement learning methods for solving optimal control problems in nonlinear deterministic dynamical systems. In order to achieve learning under uncertainty, data-driven methods for identifying system models in real-time are also developed. The book illustrates the advantages gained from the use of a model and the use of previous experience in the form of recorded data through simulations and experiments. The book’s focus on deterministic systems allows for an in-depth Lyapunov-based analysis of the performance of the methods described during the learning phase and during execution.

To yield an approximate optimal controller, the authors focus on theories and methods that fall under the umbrella of actor–critic methods for machine learning. They concentrate on establishing stability during the learning phase and the execution phase, and adaptive model-based and data-driven reinforcement learning, to assist readers in the learning process, which typically relies on instantaneous input-output measurements.

This monograph provides academic researchers with backgrounds in diverse disciplines from aerospace engineering to computer science, who are interested in optimal reinforcement learning functional analysis and functional approximation theory, with a good introduction to the use of model-based methods. The thorough treatment of an advanced treatment to control will also interest practitioners working in the chemical-process and power-supply industry.

商品描述(中文翻譯)

《強化學習於最佳反饋控制》發展了基於模型和數據驅動的強化學習方法,以解決非線性確定性動態系統中的最佳控制問題。為了在不確定性下實現學習,還開發了實時識別系統模型的數據驅動方法。本書通過模擬和實驗說明了使用模型和利用以往經驗(以記錄數據的形式)所帶來的優勢。本書專注於確定性系統,允許對所描述方法在學習階段和執行階段的性能進行深入的李雅普諾夫(Lyapunov)分析。

為了產生近似最佳控制器,作者專注於機器學習中屬於演員-評論家(actor–critic)方法的理論和方法。他們集中於在學習階段和執行階段建立穩定性,以及自適應的基於模型和數據驅動的強化學習,以協助讀者在學習過程中,這通常依賴於瞬時的輸入-輸出測量。

這本專著為來自航空工程到計算機科學等多個學科背景的學術研究者提供了良好的介紹,特別是對於對最佳強化學習函數分析和函數逼近理論感興趣的研究者。對控制的深入探討也將吸引在化學過程和電力供應行業工作的實務者。

最後瀏覽商品 (20)