A First Course in Machine Learning (Hardcover)
暫譯: 機器學習入門課程 (精裝版)

Mark Girolami

買這商品的人也買了...

相關主題

商品描述

A First Course in Machine Learning covers the core mathematical and statistical techniques needed to understand some of the most popular machine learning algorithms. The algorithms presented span the main problem areas within machine learning: classification, clustering and projection. The text gives detailed descriptions and derivations for a small number of algorithms rather than cover many algorithms in less detail.

Referenced throughout the text and available on a supporting website (http://bit.ly/firstcourseml), an extensive collection of MATLAB®/Octave scripts enables students to recreate plots that appear in the book and investigate changing model specifications and parameter values. By experimenting with the various algorithms and concepts, students see how an abstract set of equations can be used to solve real problems.

Requiring minimal mathematical prerequisites, the classroom-tested material in this text offers a concise, accessible introduction to machine learning. It provides students with the knowledge and confidence to explore the machine learning literature and research specific methods in more detail.

商品描述(中文翻譯)

《機器學習入門》涵蓋了理解一些最受歡迎的機器學習演算法所需的核心數學和統計技術。所介紹的演算法涵蓋了機器學習中的主要問題領域:分類、聚類和投影。該文本對少數幾個演算法提供了詳細的描述和推導,而不是以較少的細節涵蓋許多演算法。

在文本中引用並可在支持網站(http://bit.ly/firstcourseml)上獲得的廣泛 MATLAB®/Octave 腳本集合,使用戶能夠重現書中出現的圖表並調查變更模型規範和參數值。通過實驗各種演算法和概念,學生可以看到一組抽象的方程式如何用來解決實際問題。

該文本所需的數學先備知識極少,經過課堂測試的材料提供了對機器學習的簡明、易懂的介紹。它使學生具備探索機器學習文獻的知識和信心,並能更詳細地研究特定方法。