A Practical Guide to Quantum Machine Learning and Quantum Optimisation: Hands-on Approach to Modern Quantum Algorithms (Paperback)
暫譯: 量子機器學習與量子優化實用指南:現代量子演算法的實作方法 (平裝本)
Combarro, Elías F., González-Castillo, Samuel
- 出版商: Packt Publishing
- 出版日期: 2023-03-31
- 售價: $2,050
- 貴賓價: 9.5 折 $1,948
- 語言: 英文
- 頁數: 680
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1804613835
- ISBN-13: 9781804613832
-
相關分類:
Machine Learning、Algorithms-data-structures、量子 Quantum
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$1,250$1,225 -
$1,440$1,368 -
$1,280$1,216 -
$320$288 -
$1,150$1,127 -
$1,420$1,392 -
$1,617Deep Learning (Hardcover)
-
$505手把手教你設計 CPU-RISC-V 處理器篇
-
$1,620$1,588 -
$882Deep Learning with TensorFlow 2 and Keras, 2/e (Paperback)
-
$1,645$1,563 -
$1,480$1,450 -
$680$537 -
$2,700$2,565 -
$3,660$3,477 -
$768$730 -
$1,333Introduction to Computation and Programming Using Python : With Application to Computational Modeling and Understanding Data, 3/e (Paperback)
-
$780$764 -
$1,780$1,744 -
$650$637 -
$576$547 -
$2,450$2,328 -
$880$695 -
$2,993Machine Learning Theory and Applications: Hands-On Use Cases with Python on Classical and Quantum Machines
-
$560$442
相關主題
商品描述
Work with fully explained algorithms and ready-to-use examples that can be run on quantum simulators and actual quantum computers with this comprehensive guide
Key Features:
- Get a solid grasp of the principles behind quantum algorithms and optimization with minimal mathematical prerequisites
- Learn the process of implementing the algorithms on simulators and actual quantum computers
- Solve real-world problems using practical examples of methods
Book Description:
This book provides deep coverage of modern quantum algorithms that can be used to solve real-world problems. You'll be introduced to quantum computing using a hands-on approach with minimal prerequisites.
You'll discover many algorithms, tools, and methods to model optimization problems with the QUBO and Ising formalisms, and you will find out how to solve optimization problems with quantum annealing, QAOA, Grover Adaptive Search (GAS), and VQE. This book also shows you how to train quantum machine learning models, such as quantum support vector machines, quantum neural networks, and quantum generative adversarial networks. The book takes a straightforward path to help you learn about quantum algorithms, illustrating them with code that's ready to be run on quantum simulators and actual quantum computers. You'll also learn how to utilize programming frameworks such as IBM's Qiskit, Xanadu's PennyLane, and D-Wave's Leap.
Through reading this book, you will not only build a solid foundation of the fundamentals of quantum computing, but you will also become familiar with a wide variety of modern quantum algorithms. Moreover, this book will give you the programming skills that will enable you to start applying quantum methods to solve practical problems right away.
What You Will Learn:
- Review the basics of quantum computing
- Gain a solid understanding of modern quantum algorithms
- Understand how to formulate optimization problems with QUBO
- Solve optimization problems with quantum annealing, QAOA, GAS, and VQE
- Find out how to create quantum machine learning models
- Explore how quantum support vector machines and quantum neural networks work using Qiskit and PennyLane
- Discover how to implement hybrid architectures using Qiskit and PennyLane and its PyTorch interface
Who this book is for:
This book is for professionals from a wide variety of backgrounds, including computer scientists and programmers, engineers, physicists, chemists, and mathematicians. Basic knowledge of linear algebra and some programming skills (for instance, in Python) are assumed, although all mathematical prerequisites will be covered in the appendices.
商品描述(中文翻譯)
使用這本全面指南,與完全解釋的演算法和可在量子模擬器及實際量子電腦上運行的現成範例一起工作
主要特點:
- 在最少的數學前提下,深入理解量子演算法和優化的原理
- 學習在模擬器和實際量子電腦上實現演算法的過程
- 使用實用的範例方法解決現實世界的問題
書籍描述:
本書深入探討現代量子演算法,這些演算法可用於解決現實世界的問題。您將以動手的方式介紹量子計算,並且前提要求極少。
您將發現許多演算法、工具和方法來建模優化問題,使用 QUBO 和 Ising 形式,並了解如何使用量子退火、QAOA、Grover 自適應搜尋 (GAS) 和 VQE 解決優化問題。本書還將向您展示如何訓練量子機器學習模型,例如量子支持向量機、量子神經網絡和量子生成對抗網絡。這本書採取直接的方式幫助您了解量子演算法,並用可在量子模擬器和實際量子電腦上運行的代碼進行說明。您還將學習如何利用 IBM 的 Qiskit、Xanadu 的 PennyLane 和 D-Wave 的 Leap 等編程框架。
通過閱讀本書,您不僅將建立量子計算基礎的堅實基礎,還將熟悉各種現代量子演算法。此外,本書將提供您編程技能,使您能夠立即開始應用量子方法解決實際問題。
您將學到什麼:
- 回顧量子計算的基本概念
- 深入理解現代量子演算法
- 了解如何使用 QUBO 公式化優化問題
- 使用量子退火、QAOA、GAS 和 VQE 解決優化問題
- 了解如何創建量子機器學習模型
- 探索如何使用 Qiskit 和 PennyLane 了解量子支持向量機和量子神經網絡的運作
- 發現如何使用 Qiskit 和 PennyLane 及其 PyTorch 接口實現混合架構
本書適合誰:
本書適合來自各種背景的專業人士,包括計算機科學家和程序員、工程師、物理學家、化學家和數學家。假設具備基本的線性代數知識和一些編程技能(例如 Python),儘管所有數學前提將在附錄中涵蓋。