Linear Algebra and Matrix Analysis for Statistics (Hardcover)
暫譯: 統計學的線性代數與矩陣分析 (精裝版)
Banerjee, Sudipto, Roy, Anindya
- 出版商: CRC
- 出版日期: 2014-06-17
- 售價: $4,070
- 貴賓價: 9.5 折 $3,867
- 語言: 英文
- 頁數: 582
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1420095382
- ISBN-13: 9781420095388
-
相關分類:
機率統計學 Probability-and-statistics、線性代數 Linear-algebra
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,362Fundamentals of Data Structures in C++, 2/e (Paperback)
-
$2,980$2,831 -
$780$616 -
$1,760$1,725 -
$1,078Data Structures and Algorithm Analysis in C++, 4/e (IE-Paperback)
-
$2,240An Introduction to Statistical Learning: With Applications in R (Hardcover)
-
$1,890$1,796 -
$820$779 -
$580$493 -
$420$357 -
$660$647 -
$1,872Mastering Ethereum: Building Smart Contracts and Dapps
-
$1,130$1,074 -
$1,240$1,178 -
$1,750$1,715 -
$680$537 -
$680$537 -
$1,480$1,450 -
$270$257 -
$800$760 -
$1,200$1,176 -
$550$468 -
$3,600$3,420
相關主題
商品描述
Linear Algebra and Matrix Analysis for Statistics offers a gradual exposition to linear algebra without sacrificing the rigor of the subject. It presents both the vector space approach and the canonical forms in matrix theory. The book is as self-contained as possible, assuming no prior knowledge of linear algebra.
The authors first address the rudimentary mechanics of linear systems using Gaussian elimination and the resulting decompositions. They introduce Euclidean vector spaces using less abstract concepts and make connections to systems of linear equations wherever possible. After illustrating the importance of the rank of a matrix, they discuss complementary subspaces, oblique projectors, orthogonality, orthogonal projections and projectors, and orthogonal reduction.
The text then shows how the theoretical concepts developed are handy in analyzing solutions for linear systems. The authors also explain how determinants are useful for characterizing and deriving properties concerning matrices and linear systems. They then cover eigenvalues, eigenvectors, singular value decomposition, Jordan decomposition (including a proof), quadratic forms, and Kronecker and Hadamard products. The book concludes with accessible treatments of advanced topics, such as linear iterative systems, convergence of matrices, more general vector spaces, linear transformations, and Hilbert spaces.
商品描述(中文翻譯)
《線性代數與統計的矩陣分析》提供了一個逐步介紹線性代數的過程,同時不犧牲該主題的嚴謹性。它展示了向量空間的方法以及矩陣理論中的標準形式。這本書儘可能自成一體,假設讀者對線性代數沒有先前的知識。
作者首先使用高斯消去法及其結果的分解來處理線性系統的基本機制。他們使用較不抽象的概念介紹歐幾里得向量空間,並在可能的情況下與線性方程組建立聯繫。在說明矩陣的秩的重要性之後,他們討論了互補子空間、斜投影、正交性、正交投影和投影算子,以及正交約簡。
接著,文本展示了所發展的理論概念在分析線性系統解的過程中是多麼有用。作者還解釋了行列式如何用於表徵和推導有關矩陣和線性系統的性質。然後,他們涵蓋了特徵值、特徵向量、奇異值分解、喬丹分解(包括證明)、二次型以及克羅內克積和哈達瑪積。這本書以對進階主題的易懂處理作結,例如線性迭代系統、矩陣的收斂性、更一般的向量空間、線性變換和希爾伯特空間。