The Top Ten Algorithms in Data Mining (Hardcover)
暫譯: 數據挖掘中的十大演算法 (精裝版)
Xindong Wu, Vipin Kumar
- 出版商: CRC
- 出版日期: 2009-04-01
- 售價: $3,600
- 貴賓價: 9.5 折 $3,420
- 語言: 英文
- 頁數: 232
- 裝訂: Hardcover
- ISBN: 1420089641
- ISBN-13: 9781420089646
-
相關分類:
Algorithms-data-structures、Data-mining
立即出貨 (庫存=1)
買這商品的人也買了...
-
$530$350 -
$650$585 -
$680$578 -
$750$593 -
$820$697 -
$890$703 -
$420$277 -
$490$387 -
$450$351 -
$399$339 -
$750$675 -
$420$357 -
$790$624 -
$850$672 -
$580$493 -
$450$351 -
$580$383 -
$360$306 -
$350$277 -
$600$510 -
$450$351 -
$680$578 -
$490$382 -
$680$530 -
$520$411
相關主題
商品描述
The Best-Known Algorithms Currently Used in the Data Mining Community
Contributions from recognized leaders in the field
Identifying some of the most influential algorithms that are widely used in the data mining community, The Top Ten Algorithms in Data Mining provides a description of each algorithm, discusses its impact, and reviews current and future research. Thoroughly evaluated by independent reviewers, each chapter focuses on a particular algorithm and is written by either the original authors of the algorithm or world-class researchers who have extensively studied the respective algorithm.
The book concentrates on the following important algorithms: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART. Examples illustrate how each algorithm works and highlight its overall performance in a real-world application. The text covers key topics—including classification, clustering, statistical learning, association analysis, and link mining—in data mining research and development as well as in data mining, machine learning, and artificial intelligence courses.
By naming the leading algorithms in this field, this book encourages the use of data mining techniques in a broader realm of real-world applications. It should inspire more data mining researchers to further explore the impact and novel research issues of these algorithms.
商品描述(中文翻譯)
當前數據挖掘社群中最知名的演算法
來自該領域公認領導者的貢獻
《數據挖掘中的十大演算法》識別出一些在數據挖掘社群中廣泛使用的最具影響力的演算法,提供每個演算法的描述,討論其影響,並回顧當前及未來的研究。每一章都經過獨立評審者的徹底評估,專注於特定的演算法,並由該演算法的原始作者或對該演算法進行過廣泛研究的世界級研究人員撰寫。
本書集中於以下重要演算法:C4.5、k-Means、SVM、Apriori、EM、PageRank、AdaBoost、kNN、Naive Bayes 和 CART。範例說明每個演算法的運作方式,並突顯其在實際應用中的整體表現。文本涵蓋數據挖掘研究與開發中的關鍵主題,包括分類、聚類、統計學習、關聯分析和鏈接挖掘,以及數據挖掘、機器學習和人工智慧課程中的相關內容。
通過命名該領域的領先演算法,本書鼓勵在更廣泛的實際應用領域中使用數據挖掘技術。它應該能激勵更多的數據挖掘研究人員進一步探索這些演算法的影響及新穎的研究議題。