Text Mining: Classification, Clustering, and Applications (Chapman & Hall/CRC Data Mining and Knowledge Discovery Series)
Ashok Srivastava , Mehran Sahami
- 出版商: CRC
- 出版日期: 2009-06-01
- 售價: $4,290
- 貴賓價: 9.5 折 $4,076
- 語言: 英文
- 頁數: 328
- 裝訂: Hardcover
- ISBN: 1420059408
- ISBN-13: 9781420059403
-
相關分類:
Text-mining、Data-mining
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$990$891 -
$600$480 -
$720$612 -
$480$408 -
$620$527 -
$780$663 -
$620$527 -
$520$468 -
$1,350$1,283 -
$690$621 -
$350$273 -
$680$537 -
$680$537 -
$750$638 -
$420$357 -
$820$648 -
$380$296 -
$580$493 -
$530$419 -
$650$514 -
$400$316 -
$950$808 -
$380$300 -
$580$458 -
$490$387
相關主題
商品描述
The Definitive Resource on Text Mining Theory and Applications from Foremost Researchers in the Field
Giving a broad perspective of the field from numerous vantage points, Text Mining: Classification, Clustering, and Applications focuses on statistical methods for text mining and analysis. It examines methods to automatically cluster and classify text documents and applies these methods in a variety of areas, including adaptive information filtering, information distillation, and text search.
The book begins with chapters on the classification of documents into predefined categories. It presents state-of-the-art algorithms and their use in practice. The next chapters describe novel methods for clustering documents into groups that are not predefined. These methods seek to automatically determine topical structures that may exist in a document corpus. The book concludes by discussing various text mining applications that have significant implications for future research and industrial use.
There is no doubt that text mining will continue to play a critical role in the development of future information systems and advances in research will be instrumental to their success. This book captures the technical depth and immense practical potential of text mining, guiding readers to a sound appreciation of this burgeoning field.
商品描述(中文翻譯)
「從頂尖研究人員那裡獲得的關於文本挖掘理論和應用的權威資源」
「Text Mining: Classification, Clustering, and Applications」提供了多個視角對該領域進行廣泛的概述,重點關注文本挖掘和分析的統計方法。它探討了自動聚類和分類文本文件的方法,並將這些方法應用於自適應信息過濾、信息提煉和文本搜索等多個領域。
本書首先介紹了將文件分類為預定類別的章節。它介紹了最先進的算法及其實際應用。接下來的章節描述了將文檔聚類為非預定義群組的新方法。這些方法旨在自動確定文檔語料庫中可能存在的主題結構。本書最後討論了各種具有重要研究和工業應用意義的文本挖掘應用。
毫無疑問,文本挖掘將繼續在未來信息系統的發展中發揮關鍵作用,研究的進展將對其成功起到重要作用。本書深入探討了文本挖掘的技術深度和巨大實際潛力,引導讀者對這一新興領域有深刻的理解。