Electrical Engineering: Principles and Applications, 7/e (GE-Paperback)
暫譯: 電機工程:原理與應用,第七版 (GE-平裝本)
Allan R. Hambley (author)
- 出版商: Pearson FT Press
- 出版日期: 2018-06-05
- 售價: $1,450
- 語言: 英文
- 頁數: 896
- 裝訂: Paperback
- ISBN: 129222312X
- ISBN-13: 9781292223124
-
相關分類:
電子學 Eletronics、電機學 Electric-machinery、電路學 Electric-circuits
無法訂購
買這商品的人也買了...
-
$790$774 -
$1,421C Programming: A Modern Approach, 2/e (Paperback)
-
$1,240$1,215 -
$660$647 -
$2,058Essential Mathematical Methods for the Physical Sciences (Hardcover)
-
$720$706 -
$1,250$1,188 -
$1,180$1,156 -
$1,235Engineering Mechanics: Dynamics in Si Units, 14/e (Paperback)
-
$834$792 -
$1,180$1,156 -
$1,352Linear Algebra with Applications, 9/e (Paperback)
-
$1,380$1,352 -
$700$686 -
$640$544 -
$1,480$1,450 -
$1,560$1,529 -
$1,150$1,127 -
$1,640$1,607 -
$1,350$1,323 -
$1,280$1,216 -
$1,750$1,663 -
$1,460$1,387 -
$2,146Introduction to Algorithms, 4/e (Hardcover)
-
$620$489
相關主題
商品描述
For courses in Electrical Engineering.
Accessible and applicable learning in electrical engineering for introductory and non-major courses
The #1 title in its market, Electrical Engineering: Principles and Applications helps students learn electrical-engineering fundamentals with minimal frustration. Its goals are to present basic concepts in a general setting, to show students how the principles of electrical engineering apply to specific problems in their own fields, and to enhance the overall learning process. This book covers circuit analysis, digital systems, electronics, and electro mechanics at a level appropriate for either electrical-engineering students in an introductory course or non-majors in a survey course. A wide variety of pedagogical features stimulate student interest and engender awareness of the material’s relevance to their chosen profession. The only essential prerequisites are basic physics and single-variable calculus. The 7th Edition features technology and content updates throughout the text.
Also available with Mastering Engineering
Mastering™ Engineering is an online homework, tutorial, and assessment program designed to work with this text to engage students and improve results. Interactive, self-paced tutorials provide individualized coaching to help students stay on track. With a wide range of activities available, students can actively learn, understand, and retain even the most difficult concepts. The text and Mastering Engineering work together to guide students through engineering concepts with a multi-step approach to problems.
Students, if interested in purchasing this title with Mastering Engineering, ask your instructor for the correct package ISBN and Course ID. Instructors, contact your Pearson representative for more information.
商品描述(中文翻譯)
適用於電機工程課程。
為入門及非主修課程提供可接觸且適用的電機工程學習
在其市場中排名第一的書籍,電機工程:原理與應用幫助學生以最小的挫折學習電機工程的基本概念。其目標是在一般環境中呈現基本概念,向學生展示電機工程原理如何應用於他們自己領域的具體問題,並增強整體學習過程。本書涵蓋電路分析、數位系統、電子學和電機力學,適合電機工程入門課程的學生或非主修的調查課程學生。多樣的教學特徵激發學生的興趣,並提高他們對所選職業相關性的認識。唯一的基本先修課程是基礎物理和單變數微積分。第七版在全書中包含技術和內容的更新。
也可搭配 Mastering Engineering 使用
Mastering™ Engineering 是一個在線作業、教程和評估程序,旨在與本書配合使用,以吸引學生並改善學習成果。互動式、自我進度的教程提供個別指導,幫助學生保持進度。提供多種活動,學生可以主動學習、理解並保留即使是最困難的概念。本書與 Mastering Engineering 共同協作,通過多步驟的方法引導學生理解工程概念。
學生,如果有興趣購買搭配 Mastering Engineering 的書籍,請向您的講師詢問正確的包裝 ISBN 和課程 ID。講師,請聯繫您的 Pearson 代表以獲取更多信息。
目錄大綱
1 Introduction
1.1 Overview of Electrical Engineering
1.2 Circuits, Currents, and Voltages
1.3 Power and Energy
1.4 Kirchhoff’s Current Law
1.5 Kirchhoff’s Voltage Law
1.6 Introduction to Circuit Elements
1.7 Introduction to Circuits
2 Resistive Circuits
2.1 Resistances in Series and Parallel
2.2 Network Analysis by Using Series and Parallel Equivalents
2.3 Voltage-Divider and Current-Divider Circuits
2.4 Node-Voltage Analysis
2.5 Mesh-Current Analysis
2.6 Thévenin and Norton Equivalent Circuits
2.7 Superposition Principle
2.8 Wheatstone Bridge
3 Inductance and Capacitance
3.1 Capacitance
3.2 Capacitances in Series and Parallel
3.3 Physical Characteristics of Capacitors
3.4 Inductance
3.5 Inductances in Series and Parallel
3.6 Practical Inductors
3.7 Mutual Inductance
3.8 Symbolic Integration and Differentiation Using MATLAB
4 Transients
4.1 First-Order RC Circuits
4.2 DC Steady State
4.3 RL Circuits
4.4 RC and RL Circuits with General Sources
4.5 Second-Order Circuits
4.6 Transient Analysis Using the MATLAB Symbolic Toolbox
5 Steady-State Sinusoidal Analysis
5.1 Sinusoidal Currents and Voltages
5.2 Phasors
5.3 Complex Impedances
5.4 Circuit Analysis with Phasors and Complex Impedances
5.5 Power in AC Circuits
5.6 Thévenin and Norton Equivalent Circuits
5.7 Balanced Three-Phase Circuits
5.8 AC Analysis Using MATLAB
6 Frequency Response, Bode Plots, and Resonance
6.1 Fourier Analysis, Filters, and Transfer Functions
6.2 First-Order Lowpass Filters
6.3 Decibels, the Cascade Connection, and Logarithmic Frequency Scales
6.4 Bode Plots
6.5 First-Order Highpass Filters
6.6 Series Resonance
6.7 Parallel Resonance
6.8 Ideal and Second-Order Filters
6.9 Transfer Functions and Bode Plots with MATLAB
6.10 Digital Signal Processing
7 Logic Circuits
7.1 Basic Logic Circuit Concepts
7.2 Representation of Numerical Data in Binary Form
7.3 Combinatorial Logic Circuits
7.4 Synthesis of Logic Circuits
7.5 Minimization of Logic Circuits
7.6 Sequential Logic Circuits
8 Computers, Microcontrollers, and Computer-Based Instrumentation Systems
8.1 Computer Organization
8.2 Memory Types
8.3 Digital Process Control
8.4 Programming Model for the HCS12/9S12 Family
8.5 The Instruction Set and Addressing Modes for the CPU12
8.6 Assembly-Language Programming
8.7 Measurement Concepts and Sensors
8.8 Signal Conditioning
8.9 Analog-to-Digital Conversion
9 Diodes
9.1 Basic Diode Concepts
9.2 Load-Line Analysis of Diode Circuits
9.3 Zener-Diode Voltage-Regulator Circuits
9.4 Ideal-Diode Model
9.5 Piecewise-Linear Diode Models
9.6 Rectifier Circuits
9.7 Wave-Shaping Circuits
9.8 Linear Small-Signal Equivalent Circuits
10 Amplifiers: Specifications and External Characteristics
10.1 Basic Amplifier Concepts
10.2 Cascaded Amplifiers
10.3 Power Supplies and Efficiency
10.4 Additional Amplifier Models
10.5 Importance of Amplifier Impedances in Various Applications
10.6 Ideal Amplifiers
10.7 Frequency Response
10.8 Linear Waveform Distortion
10.9 Pulse Response
10.10 Transfer Characteristic and Nonlinear Distortion
10.11 Differential Amplifiers
10.12 Offset Voltage, Bias Current, and Offset Current
11 Field-Effect Transistors
11.1 NMOS and PMOS Transistors
11.2 Load-Line Analysis of a Simple NMOS Amplifier
11.3 Bias Circuits
11.4 Small-Signal Equivalent Circuits
11.5 Common-Source Amplifiers
11.6 Source Followers
11.7 CMOS Logic Gates
12 Bipolar Junction Transistors
12.1 Current and Voltage Relationships
12.2 Common-Emitter Characteristics
12.3 Load-Line Analysis of a Common-Emitter Amplifier
12.4 pnp Bipolar Junction Transistors
12.5 Large-Signal DC Circuit Models
12.6 Large-Signal DC Analysis of BJT Circuits
12.7 Small-Signal Equivalent Circuits
12.8 Common-Emitter Amplifiers
12.9 Emitter Followers
13 Operational Amplifiers
13.1 Ideal Operational Amplifiers
13.2 Inverting Amplifiers
13.3 Noninverting Amplifiers
13.4 Design of Simple Amplifiers
13.5 Op-Amp Imperfections in the Linear Range of Operation
13.6 Nonlinear Limitations
13.7 DC Imperfections
13.8 Differential and Instrumentation Amplifiers
13.9 Integrators and Differentiators
13.10 Active Filters
14 Magnetic Circuits and Transformers
14.1 Magnetic Fields
14.2 Magnetic Circuits
14.3 Inductance and Mutual Inductance
14.4 Magnetic Materials
14.5 Ideal Transformers
14.6 Real Transformers
15 DC Machines
15.1 Overview of Motors
15.2 Principles of DC Machines
15.3 Rotating DC Machines
15.4 Shunt-Connected and Separately Excited DC Motors
15.5 Series-Connected DC Motors
15.6 Speed Control of DC Motors
15.7 DC Generators
16 AC Machines
16.1 Three-Phase Induction Motors
16.2 Equivalent-Circuit and Performance Calculations for Induction Motors
16.3 Synchronous Machines
16.4 Single-Phase Motors
16.5 Stepper Motors and Brushless DC Motors
Appendices
A Complex Numbers
B Nominal Values and the Color Code for Resistors
C The Fundamentals of Engineering Examination
D Answers for the Practice Tests
E Online Student Resources
目錄大綱(中文翻譯)
1 Introduction
1.1 Overview of Electrical Engineering
1.2 Circuits, Currents, and Voltages
1.3 Power and Energy
1.4 Kirchhoff’s Current Law
1.5 Kirchhoff’s Voltage Law
1.6 Introduction to Circuit Elements
1.7 Introduction to Circuits
2 Resistive Circuits
2.1 Resistances in Series and Parallel
2.2 Network Analysis by Using Series and Parallel Equivalents
2.3 Voltage-Divider and Current-Divider Circuits
2.4 Node-Voltage Analysis
2.5 Mesh-Current Analysis
2.6 Thévenin and Norton Equivalent Circuits
2.7 Superposition Principle
2.8 Wheatstone Bridge
3 Inductance and Capacitance
3.1 Capacitance
3.2 Capacitances in Series and Parallel
3.3 Physical Characteristics of Capacitors
3.4 Inductance
3.5 Inductances in Series and Parallel
3.6 Practical Inductors
3.7 Mutual Inductance
3.8 Symbolic Integration and Differentiation Using MATLAB
4 Transients
4.1 First-Order RC Circuits
4.2 DC Steady State
4.3 RL Circuits
4.4 RC and RL Circuits with General Sources
4.5 Second-Order Circuits
4.6 Transient Analysis Using the MATLAB Symbolic Toolbox
5 Steady-State Sinusoidal Analysis
5.1 Sinusoidal Currents and Voltages
5.2 Phasors
5.3 Complex Impedances
5.4 Circuit Analysis with Phasors and Complex Impedances
5.5 Power in AC Circuits
5.6 Thévenin and Norton Equivalent Circuits
5.7 Balanced Three-Phase Circuits
5.8 AC Analysis Using MATLAB
6 Frequency Response, Bode Plots, and Resonance
6.1 Fourier Analysis, Filters, and Transfer Functions
6.2 First-Order Lowpass Filters
6.3 Decibels, the Cascade Connection, and Logarithmic Frequency Scales
6.4 Bode Plots
6.5 First-Order Highpass Filters
6.6 Series Resonance
6.7 Parallel Resonance
6.8 Ideal and Second-Order Filters
6.9 Transfer Functions and Bode Plots with MATLAB
6.10 Digital Signal Processing
7 Logic Circuits
7.1 Basic Logic Circuit Concepts
7.2 Representation of Numerical Data in Binary Form
7.3 Combinatorial Logic Circuits
7.4 Synthesis of Logic Circuits
7.5 Minimization of Logic Circuits
7.6 Sequential Logic Circuits
8 Computers, Microcontrollers, and Computer-Based Instrumentation Systems
8.1 Computer Organization
8.2 Memory Types
8.3 Digital Process Control
8.4 Programming Model for the HCS12/9S12 Family
8.5 The Instruction Set and Addressing Modes for the CPU12
8.6 Assembly-Language Programming
8.7 Measurement Concepts and Sensors
8.8 Signal Conditioning
8.9 Analog-to-Digital Conversion
9 Diodes
9.1 Basic Diode Concepts
9.2 Load-Line Analysis of Diode Circuits
9.3 Zener-Diode Voltage-Regulator Circuits
9.4 Ideal-Diode Model
9.5 Piecewise-Linear Diode Models
9.6 Rectifier Circuits
9.7 Wave-Shaping Circuits
9.8 Linear Small-Signal Equivalent Circuits
10 Amplifiers: Specifications and External Characteristics
10.1 Basic Amplifier Concepts
10.2 Cascaded Amplifiers
10.3 Power Supplies and Efficiency
10.4 Additional Amplifier Models
10.5 Importance of Amplifier Impedances in Various Applications
10.6 Ideal Amplifiers
10.7 Frequency Response
10.8 Linear Waveform Distortion
10.9 Pulse Response
10.10 Transfer Characteristic and Nonlinear Distortion
10.11 Differential Amplifiers
10.12 Offset Voltage, Bias Current, and Offset Current
11 Field-Effect Transistors
11.1 NMOS and PMOS Transistors
11.2 Load-Line Analysis of a Simple NMOS Amplifier
11.3 Bias Circuits
11.4 Small-Signal Equivalent Circuits
11.5 Common-Source Amplifiers
11.6 Source Followers
11.7 CMOS Logic Gates
12 Bipolar Junction Transistors
12.1 Current and Voltage Relationships
12.2 Common-Emitter Characteristics
12.3 Load-Line Analysis of a Common-Emitter Amplifier
12.4 pnp Bipolar Junction Transistors
12.5 Large-Signal DC Circuit Models
12.6 Large-Signal DC Analysis of BJT Circuits
12.7 Small-Signal Equivalent Circuits
12.8 Common-Emitter Amplifiers
12.9 Emitter Followers
13 Operational Amplifiers
13.1 Ideal Operational Amplifiers
13.2 Inverting Amplifiers
13.3 Noninverting Amplifiers
13.4 Design of Simple Amplifiers
13.5 Op-Amp Imperfections in the Linear Range of Operation
13.6 Nonlinear Limitations
13.7 DC Imperfections
13.8 Differential and Instrumentation Amplifiers
13.9 Integrators and Differentiators
13.10 Active Filters
14 Magnetic Circuits and Transformers
14.1 Magnetic Fields
14.2 Magnetic Circuits
14.3 Inductance and Mutual Inductance
14.4 Magnetic Materials
14.5 Ideal Transformers
14.6 Real Transformers
15 DC Machines
15.1 Overview of Motors
15.2 Principles of DC Machines
15.3 Rotating DC Machines
15.4 Shunt-Connected and Separately Excited DC Motors
15.5 Series-Connected DC Motors
15.6 Speed Control of DC Motors
15.7 DC Generators
16 AC Machines
16.1 Three-Phase Induction Motors
16.2 Equivalent-Circuit and Performance Calculations for Induction Motors
16.3 Synchronous Machines
16.4 Single-Phase Motors
16.5 Stepper Motors and Brushless DC Motors
Appendices
A Complex Numbers
B Nominal Values and the Color Code for Resistors
C The Fundamentals of Engineering Examination
D Answers for the Practice Tests
E Online Student Resources