Bayesian Inference with Inla
暫譯: 使用 INLA 的貝葉斯推斷

Gomez-Rubio, Virgilio

相關主題

商品描述

The integrated nested Laplace approximation (INLA) is a recent computational method that can fit Bayesian models in a fraction of the time required by typical Markov chain Monte Carlo (MCMC) methods. INLA focuses on marginal inference on the model parameters of latent Gaussian Markov random fields models and exploits conditional independence properties in the model for computational speed.

Bayesian Inference with INLA provides a description of INLA and its associated R package for model fitting. This book describes the underlying methodology as well as how to fit a wide range of models with R. Topics covered include generalized linear mixed-effects models, multilevel models, spatial and spatio-temporal models, smoothing methods, survival analysis, imputation of missing values, and mixture models. Advanced features of the INLA package and how to extend the number of priors and latent models available in the package are discussed. All examples in the book are fully reproducible and datasets and R code are available from the book website.

This book will be helpful to researchers from different areas with some background in Bayesian inference that want to apply the INLA method in their work. The examples cover topics on biostatistics, econometrics, education, environmental science, epidemiology, public health, and the social sciences.

商品描述(中文翻譯)

整合嵌套拉普拉斯近似(INLA)是一種最近的計算方法,可以在典型的馬可夫鏈蒙地卡羅(MCMC)方法所需時間的一小部分內擬合貝葉斯模型。INLA 專注於潛在高斯馬可夫隨機場模型的模型參數的邊際推斷,並利用模型中的條件獨立性特性來提高計算速度。

《使用 INLA 的貝葉斯推斷》提供了 INLA 及其相關 R 套件的模型擬合描述。本書描述了基礎方法論以及如何使用 R 擬合各種模型。涵蓋的主題包括廣義線性混合效應模型、多層次模型、空間和時空模型、平滑方法、生存分析、缺失值插補和混合模型。還討論了 INLA 套件的進階功能以及如何擴展套件中可用的先驗和潛在模型。本書中的所有示例均可完全重現,數據集和 R 代碼可從書籍網站獲得。

本書將對來自不同領域且具備一定貝葉斯推斷背景的研究人員有所幫助,特別是那些希望在其工作中應用 INLA 方法的人。示例涵蓋了生物統計學、計量經濟學、教育、環境科學、流行病學、公共衛生和社會科學等主題。

作者簡介

Virgilio Gómez-Rubio is associate professor in the Department of Mathematics, School of Industrial Engineering, Universidad de Castilla-La Mancha, Albacete, Spain. He has developed several packages on spatial and Bayesian statistics that are available on CRAN, as well as co-authored books on spatial data analysis and INLA including Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA (CRC Press, 2019).

作者簡介(中文翻譯)

Virgilio Gómez-Rubio 是西班牙阿爾巴塞特的卡斯蒂利亞-拉曼查大學工業工程學院數學系的副教授。他開發了幾個關於空間和貝葉斯統計的套件,這些套件可在 CRAN 上獲得,並且共同撰寫了關於空間數據分析和 INLA 的書籍,包括《使用 R 和 INLA 的隨機偏微分方程的高級空間建模》(CRC Press, 2019)。