Bayesian Speech and Language Processing
暫譯: 貝葉斯語音與語言處理

Shinji Watanabe, Jen-Tzung Chien

買這商品的人也買了...

商品描述

With this comprehensive guide you will learn how to apply Bayesian machine learning techniques systematically to solve various problems in speech and language processing. A range of statistical models is detailed, from hidden Markov models to Gaussian mixture models, n-gram models and latent topic models, along with applications including automatic speech recognition, speaker verification, and information retrieval. Approximate Bayesian inferences based on MAP, Evidence, Asymptotic, VB, and MCMC approximations are provided as well as full derivations of calculations, useful notations, formulas, and rules. The authors address the difficulties of straightforward applications and provide detailed examples and case studies to demonstrate how you can successfully use practical Bayesian inference methods to improve the performance of information systems. This is an invaluable resource for students, researchers, and industry practitioners working in machine learning, signal processing, and speech and language processing.

商品描述(中文翻譯)

這本全面的指南將教您如何系統性地應用貝葉斯機器學習技術來解決語音和語言處理中的各種問題。書中詳細介紹了一系列統計模型,包括隱藏馬可夫模型(hidden Markov models)、高斯混合模型(Gaussian mixture models)、n-gram模型以及潛在主題模型(latent topic models),並涵蓋了自動語音識別(automatic speech recognition)、說話者驗證(speaker verification)和信息檢索(information retrieval)等應用。書中提供了基於最大後驗估計(MAP)、證據(Evidence)、漸近(Asymptotic)、變分貝葉斯(VB)和馬可夫鏈蒙地卡羅(MCMC)近似的近似貝葉斯推斷,並完整推導了計算過程、實用符號、公式和規則。作者針對直接應用中的困難進行了探討,並提供了詳細的範例和案例研究,以展示如何成功使用實用的貝葉斯推斷方法來提升信息系統的性能。這是一本對於從事機器學習、信號處理以及語音和語言處理的學生、研究人員和業界實踐者來說,極具價值的資源。