The False Discovery Rate: Its Meaning, Interpretation and Application in Data Science
暫譯: 虛假發現率:其意義、解釋及在數據科學中的應用
Galwey, N. W.
- 出版商: Wiley
- 出版日期: 2024-11-04
- 售價: $3,340
- 貴賓價: 9.5 折 $3,173
- 語言: 英文
- 頁數: 288
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1119889774
- ISBN-13: 9781119889779
-
相關分類:
Data Science
海外代購書籍(需單獨結帳)
相關主題
商品描述
An essential tool for statisticians and data scientists seeking to interpret the vast troves of data that increasingly power our world
First developed in the 1990s, the False Discovery Rate (FDR) is a way of describing the rate at which null hypothesis testing produces errors. It has since become an essential tool for interpreting large datasets. In recent years, as datasets have become ever larger, and as the importance of 'big data' to scientific research has grown, the significance of the FDR has grown correspondingly.
The False Discovery Rate provides an analysis of the FDR's value as a tool, including why it should generally be preferred to the Bonferroni correction and other methods by which multiplicity can be accounted for. It offers a systematic overview of the FDR, its core claims, and its applications.
Readers of The False Discovery Rate will also find:
- Case studies throughout, rooted in real and simulated data sets
- Detailed discussion of topics including representation of the FDR on a Q-Q plot, consequences of non-monotonicity, and many more
- Wide-ranging analysis suited for a broad readership
The False Discovery Rate is ideal for Statistics and Data Science courses, and short courses associated with conferences. It is also useful as supplementary reading in courses in other disciplines that require the statistical interpretation of "big data.' The book will also be of great value to statisticians and researchers looking to learn more about the FDR.
商品描述(中文翻譯)
對於尋求解釋日益增長的數據量的統計學家和數據科學家來說,這是一個必不可少的工具
最早在1990年代開發的虛假發現率(False Discovery Rate, FDR)是一種描述虛無假設檢驗產生錯誤的比率的方法。隨著數據集的規模不斷增大,以及「大數據」在科學研究中的重要性日益增加,FDR的重要性也相應增長。
虛假發現率 提供了FDR作為工具的價值分析,包括為什麼它通常應該優於Bonferroni修正和其他考慮多重性的方法。它提供了FDR的系統概述、其核心主張及其應用。
虛假發現率 的讀者還將發現:
- 基於真實和模擬數據集的案例研究
- 對於包括在Q-Q圖上表示FDR的詳細討論、非單調性的後果等主題的深入探討
- 適合廣泛讀者的廣泛分析
虛假發現率 非常適合統計學和數據科學課程,以及與會議相關的短期課程。它也可作為其他學科中需要對「大數據」進行統計解釋的課程的補充閱讀。這本書對於希望深入了解FDR的統計學家和研究人員也將具有很大的價值。
作者簡介
N. W. GALWEY is a Statistics Leader, Research Statistics, at GlaxoSmithKline Research and Development (Retired).
作者簡介(中文翻譯)
N. W. GALWEY 是葛蘭素史克研究與開發部門的統計領導者(已退休)。