Evidence-Based Statistics: An Introduction to the Evidential Approach - From Likelihood Principle to Statistical Practice
暫譯: 基於證據的統計學:證據方法入門 - 從可能性原則到統計實踐
Cahusac, Peter M. B.
- 出版商: Wiley
- 出版日期: 2020-10-13
- 售價: $3,940
- 貴賓價: 9.5 折 $3,743
- 語言: 英文
- 頁數: 256
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1119549809
- ISBN-13: 9781119549802
-
相關分類:
機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book provides an accessible exposition of the likelihood approach to undergraduate and postgraduate students in biomedical, biological and social sciences. The book contains 9 chapters, beginning with an introduction on the limitations of P values and a description of how the likelihood approach better represents statistical evidence. Chapter 1 covers the definition of effect size, its different measures, and importance. Next, Chapter 2 examines the likelihood approach, covering how the likelihood ratio is driven by increased data either to support or contradict one or the other hypothesis. Related and independent samples with t are covered in Chapter 3, while ANOVA is the theme of chapter 4. This chapter uses the Glover & Dixon approach to compare two competing models. Chapter 5 discusses correlation and regression, while Chapter 6 examines the Armitage stopping rule. The author examines equivalence tests in Chapter 7, using likelihood and confidence intervals to determine the absence of an effect using Lakens' approach with modification of Cohen's d. The likelihood ratio for one-way and two-way categorical data is covered in Chapter 8. Finally, Chapter 9 concludes the text with other useful techniques, such as the minimum Bayes factor and the false positive risk.
商品描述(中文翻譯)
這本書為生物醫學、生物科學和社會科學的本科生及研究生提供了一個易於理解的似然方法介紹。書中包含9個章節,首先介紹了 P 值的局限性,以及似然方法如何更好地代表統計證據的描述。第一章涵蓋了效應大小的定義、不同的測量方法及其重要性。接下來,第二章探討了似然方法,說明似然比如何受到數據增加的驅動,以支持或反駁某一假設。第三章涉及相關樣本和獨立樣本的 t 檢定,而第四章的主題是變異數分析(ANOVA)。本章使用 Glover & Dixon 方法來比較兩個競爭模型。第五章討論了相關性和回歸,而第六章則檢視了 Armitage 停止規則。作者在第七章中探討了等效性檢定,使用似然和信賴區間來確定效果的缺失,並採用 Lakens 的方法對 Cohen 的 d 進行修改。第八章涵蓋了一維和二維類別數據的似然比。最後,第九章以其他有用的技術作結,例如最小貝葉斯因子和假陽性風險。
作者簡介
PETER M.B. CAHUSAC, PHD, received his doctorate in neuropharmacology from the Medical School Bristol University in 1984. He completed post-doctoral studies at Oxford University where he obtained an MSc in Applied Statistics in 1992. He is a member of the British Pharmacological Society, and Fellow of the Physiological (UK) and the Royal Statistical Societies. He is currently Associate Professor in Biostatistics and Pharmacology at Alfaisal University in Riyadh, Saudi Arabia.
作者簡介(中文翻譯)
彼得·M·B·卡胡薩克(PETER M.B. CAHUSAC, PHD)於1984年在布里斯托大學醫學院獲得神經藥理學博士學位。他在牛津大學完成了博士後研究,並於1992年獲得應用統計學碩士學位。他是英國藥理學會的成員,也是英國生理學會和皇家統計學會的院士。目前,他是沙烏地阿拉伯利雅德阿爾法伊薩大學的生物統計學和藥理學副教授。