Pattern Recognition: A Quality of Data Perspective (Wiley Series on Methods and Applications in Data Mining)

Wladyslaw Homenda, Witold Pedrycz

  • 出版商: Wiley
  • 出版日期: 2018-03-07
  • 售價: $3,980
  • 貴賓價: 9.5$3,781
  • 語言: 英文
  • 頁數: 320
  • 裝訂: Hardcover
  • ISBN: 111930282X
  • ISBN-13: 9781119302827
  • 相關分類: Data-mining
  • 相關翻譯: 模式識別:數據質量視角 (簡中版)
  • 立即出貨 (庫存=1)

買這商品的人也買了...

相關主題

商品描述

A new approach to the issue of data quality in pattern recognition

Detailing foundational concepts before introducing more complex methodologies and algorithms, this book is a self-contained manual for advanced data analysis and data mining. Top-down organization presents detailed applications only after methodological issues have been mastered, and step-by-step instructions help ensure successful implementation of new processes. By positioning data quality as a factor to be dealt with rather than overcome, the framework provided serves as a valuable, versatile tool in the analysis arsenal.

For decades, practical need has inspired intense theoretical and applied research into pattern recognition for numerous and diverse applications. Throughout, the limiting factor and perpetual problem has been data—its sheer diversity, abundance, and variable quality presents the central challenge to pattern recognition innovation. Pattern Recognition: A Quality of Data Perspective repositions that challenge from a hurdle to a given, and presents a new framework for comprehensive data analysis that is designed specifically to accommodate problem data.

Designed as both a practical manual and a discussion about the most useful elements of pattern recognition innovation, this book:

  • Details fundamental pattern recognition concepts, including feature space construction, classifiers, rejection, and evaluation
  • Provides a systematic examination of the concepts, design methodology, and algorithms involved in pattern recognition
  • Includes numerous experiments, detailed schemes, and more advanced problems that reinforce complex concepts
  • Acts as a self-contained primer toward advanced solutions, with detailed background and step-by-step processes
  • Introduces the concept of granules and provides a framework for granular computing

Pattern recognition plays a pivotal role in data analysis and data mining, fields which are themselves being applied in an expanding sphere of utility. By facing the data quality issue head-on, this book provides students, practitioners, and researchers with a clear way forward amidst the ever-expanding data supply. 

商品描述(中文翻譯)

一種新的方法來處理模式識別中的數據質量問題

在介紹更複雜的方法和算法之前,詳細介紹基礎概念,本書是一本自成一體的高級數據分析和數據挖掘手冊。從方法論問題掌握之後才介紹詳細的應用,逐步指導確保新流程的成功實施。通過將數據質量定位為需要處理而不是克服的因素,所提供的框架成為分析工具中一個有價值且多功能的工具。

數十年來,實際需求激發了對於各種應用的模式識別進行深入的理論和應用研究。在整個過程中,限制因素和永恆問題一直是數據,其多樣性、豐富性和可變質量對於模式識別創新構成了核心挑戰。《模式識別:從數據質量的角度出發》將這一挑戰重新定位為一個已知的問題,並提出了一個新的框架,用於全面的數據分析,專門設計來應對問題數據。

本書旨在作為一本實用手冊和關於模式識別創新最有用元素的討論,具體內容如下:

- 詳細介紹基本的模式識別概念,包括特徵空間構建、分類器、拒絕和評估
- 系統性地研究模式識別中涉及的概念、設計方法和算法
- 包含大量實驗、詳細方案和更高級的問題,以加強複雜概念的理解
- 作為一個自成一體的入門指南,提供詳細的背景和逐步過程
- 引入顆粒的概念,並提供顆粒計算的框架

模式識別在數據分析和數據挖掘中起著關鍵作用,這些領域本身正在應用於不斷擴大的實用範圍。通過直面數據質量問題,本書為學生、從業人員和研究人員提供了在不斷擴大的數據供應中前進的明確方向。