The Minimum Description Length Principle
暫譯: 最小描述長度原則
Grunwald, Peter D.
- 出版商: Summit Valley Press
- 出版日期: 2007-03-23
- 售價: $3,550
- 貴賓價: 9.5 折 $3,373
- 語言: 英文
- 頁數: 736
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0262529637
- ISBN-13: 9780262529631
海外代購書籍(需單獨結帳)
相關主題
商品描述
A comprehensive introduction and reference guide to the minimum description length (MDL) Principle that is accessible to researchers dealing with inductive reference in diverse areas including statistics, pattern classification, machine learning, data mining, biology, econometrics, and experimental psychology, as well as philosophers interested in the foundations of statistics.
The minimum description length (MDL) principle is a powerful method of inductive inference, the basis of statistical modeling, pattern recognition, and machine learning. It holds that the best explanation, given a limited set of observed data, is the one that permits the greatest compression of the data. MDL methods are particularly well-suited for dealing with model selection, prediction, and estimation problems in situations where the models under consideration can be arbitrarily complex, and overfitting the data is a serious concern. This extensive, step-by-step introduction to the MDL Principle provides a comprehensive reference (with an emphasis on conceptual issues) that is accessible to graduate students and researchers in statistics, pattern classification, machine learning, and data mining, to philosophers interested in the foundations of statistics, and to researchers in other applied sciences that involve model selection, including biology, econometrics, and experimental psychology.
Part I provides a basic introduction to MDL and an overview of the concepts in statistics and information theory needed to understand MDL. Part II treats universal coding, the information-theoretic notion on which MDL is built, and part III gives a formal treatment of MDL theory as a theory of inductive inference based on universal coding. Part IV provides a comprehensive overview of the statistical theory of exponential families with an emphasis on their information-theoretic properties. The text includes a number of summaries, paragraphs offering the reader a fast track through the material, and boxes highlighting the most important concepts.
商品描述(中文翻譯)
這是一本全面介紹和參考最小描述長度(MDL)原則的指南,適合從事各種領域的研究人員,包括統計學、模式分類、機器學習、資料探勘、生物學、計量經濟學和實驗心理學,以及對統計基礎感興趣的哲學家。
最小描述長度(MDL)原則是一種強大的歸納推理方法,是統計建模、模式識別和機器學習的基礎。它認為,在給定有限觀察數據的情況下,最佳解釋是能夠最大程度壓縮數據的解釋。MDL 方法特別適合處理模型選擇、預測和估計問題,尤其是在考慮的模型可能非常複雜且過擬合數據是一個嚴重問題的情況下。本書對 MDL 原則進行了廣泛的逐步介紹,提供了一個全面的參考(強調概念問題),適合統計學、模式分類、機器學習和資料探勘的研究生和研究人員,對統計基礎感興趣的哲學家,以及涉及模型選擇的其他應用科學研究人員,包括生物學、計量經濟學和實驗心理學。
第一部分提供了 MDL 的基本介紹以及理解 MDL 所需的統計學和信息理論概念概述。第二部分討論了通用編碼,這是 MDL 所基於的信息理論概念,第三部分對 MDL 理論作了正式的處理,將其視為基於通用編碼的歸納推理理論。第四部分提供了指數族統計理論的全面概述,強調其信息理論特性。文本中包括多個摘要、段落,為讀者提供快速了解材料的途徑,以及突出最重要概念的框框。
作者簡介
作者簡介(中文翻譯)
彼得·D·格倫瓦爾德(Peter D. Grünwald)是荷蘭阿姆斯特丹數學與計算機科學國家研究所(CWI)的研究員。他同時也與荷蘭埃因霍溫的歐洲隨機現象研究所(EURANDOM)有關聯。