Coding Ockham's Razor
暫譯: 編碼奧卡姆剃刀
Lloyd Allison
- 出版商: Springer
- 出版日期: 2018-05-18
- 售價: $4,510
- 貴賓價: 9.5 折 $4,285
- 語言: 英文
- 頁數: 175
- 裝訂: Hardcover
- ISBN: 3319764322
- ISBN-13: 9783319764320
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book explores inductive inference using the minimum message length (MML) principle, a Bayesian method which is a realisation of Ockham's Razor based on information theory. Accompanied by a library of software, the book can assist an applications programmer, student or researcher in the fields of data analysis and machine learning to write computer programs based upon this principle.
MML inference has been around for 50 years and yet only one highly technical book has been written about the subject. The majority of research in the field has been backed by specialised one-off programs but this book includes a library of general MML–based software, in Java. The Java source code is available under the GNU GPL open-source license. The software library is documented using Javadoc which produces extensive cross referenced HTML manual pages. Every probability distribution and statistical model that is described in the book is implemented and documented in the software library. The library may contain a component that directly solves a reader's inference problem, or contain components that can be put together to solve the problem, or provide a standard interface under which a new component can be written to solve the problem.
This book will be of interest to application developers in the fields of machine learning and statistics as well as academics, postdocs, programmers and data scientists. It could also be used by third year or fourth year undergraduate or postgraduate students.
商品描述(中文翻譯)
這本書探討了使用最小訊息長度(MML)原則的歸納推理,這是一種基於資訊理論的貝葉斯方法,實現了奧卡姆剃刀的概念。這本書附帶了一個軟體庫,可以幫助應用程式開發人員、學生或研究人員在資料分析和機器學習領域根據這一原則編寫電腦程式。
MML 推理已經存在了 50 年,但關於這個主題的書籍只有一本高度技術性的書。該領域的大多數研究都是由專門的一次性程式支持的,但這本書包含了一個基於 MML 的通用軟體庫,使用 Java 語言編寫。Java 原始碼根據 GNU GPL 開源許可證提供。該軟體庫使用 Javadoc 進行文檔編寫,生成廣泛的交叉引用 HTML 手冊頁面。書中描述的每一個機率分佈和統計模型都在軟體庫中實現並有文檔說明。該庫可能包含一個直接解決讀者推理問題的組件,或包含可以組合起來解決問題的組件,或提供一個標準介面,讓新的組件可以被編寫來解決問題。
這本書將吸引機器學習和統計領域的應用開發人員,以及學術界的學者、博士後、程式設計師和資料科學家。它也可以被三年級或四年級的本科生或研究生使用。