Data-Variant Kernel Analysis (Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control) Hardcover
暫譯: 數據變異核分析(自適應與認知動態系統:信號處理、學習、通信與控制)精裝版

Yuichi Motai

  • 出版商: Wiley
  • 出版日期: 2015-04-20
  • 售價: $4,950
  • 貴賓價: 9.5$4,703
  • 語言: 英文
  • 頁數: 256
  • 裝訂: Hardcover
  • ISBN: 111901932X
  • ISBN-13: 9781119019329
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Describes and discusses the variants of kernel analysis methods for data types that have been intensely studied in recent years

This book covers kernel analysis topics ranging from the fundamental theory of kernel functions to its applications. The book surveys the current status, popular trends, and developments in kernel analysis studies. The author discusses multiple kernel learning algorithms and how to choose the appropriate kernels during the learning phase. Data-Variant Kernel Analysis is a new pattern analysis framework for different types of data configurations. The chapters include data formations of offline, distributed, online, cloud, and longitudinal data, used for kernel analysis to classify and predict future state. 

Data-Variant Kernel Analysis:

  • Surveys the kernel analysis in the traditionally developed machine learning techniques, such as Neural Networks (NN), Support Vector Machines (SVM), and Principal Component Analysis (PCA)
  • Develops group kernel analysis with the distributed databases to compare speed and memory usages
  • Explores the possibility of real-time processes by synthesizing offline and online databases
  • Applies the assembled databases to compare cloud computing environments
  • Examines the prediction of longitudinal data with time-sequential configurations

Data-Variant Kernel Analysis is a detailed reference for graduate students as well as electrical and computer engineers interested in pattern analysis and its application in colon cancer detection.

商品描述(中文翻譯)

描述並討論近年來對數據類型進行深入研究的核分析方法變體

本書涵蓋了從核函數的基本理論到其應用的核分析主題。該書調查了核分析研究的當前狀況、流行趨勢和發展。作者討論了多核學習算法以及如何在學習階段選擇適當的核。數據變異核分析是一種針對不同數據配置的新型模式分析框架。各章節包括離線、分佈式、在線、雲端和縱向數據的數據形成,這些數據用於核分析以分類和預測未來狀態。

數據變異核分析:

  • 調查傳統機器學習技術中的核分析,例如神經網絡 (NN)、支持向量機 (SVM) 和主成分分析 (PCA)
  • 開發與分佈式數據庫的群組核分析,以比較速度和內存使用情況
  • 通過綜合離線和在線數據庫探索實時處理的可能性
  • 將組合數據庫應用於比較雲計算環境
  • 檢查具有時間序列配置的縱向數據的預測

數據變異核分析是對研究生以及對模式分析及其在結腸癌檢測應用中感興趣的電機和計算機工程師的詳細參考資料。