Learning with Support Vector Machines (Synthesis Lectures on Artificial Intelligence and Machine Learning)
暫譯: 支持向量機學習(人工智慧與機器學習綜合講座)

Colin Campbell, Yiming Ying

  • 出版商: Morgan & Claypool
  • 出版日期: 2011-02-15
  • 售價: $1,440
  • 貴賓價: 9.5$1,368
  • 語言: 英文
  • 頁數: 100
  • 裝訂: Paperback
  • ISBN: 1608456161
  • ISBN-13: 9781608456161
  • 相關分類: 人工智慧Machine Learning
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Support Vectors Machines have become a well established tool within machine learning. They work well in practice and have now been used across a wide range of applications from recognizing hand-written digits, to face identification, text categorisation, bioinformatics, and database marketing. In this book we give an introductory overview of this subject. We start with a simple Support Vector Machine for performing binary classification before considering multi-class classification and learning in the presence of noise. We show that this framework can be extended to many other scenarios such as prediction with real-valued outputs, novelty detection and the handling of complex output structures such as parse trees. Finally, we give an overview of the main types of kernels which are used in practice and how to learn and make predictions from multiple types of input data. Table of Contents: Support Vector Machines for Classification / Kernel-based Models / Learning with Kernels

商品描述(中文翻譯)

支持向量機(Support Vector Machines)已成為機器學習中一個成熟的工具。它們在實踐中表現良好,並且已被廣泛應用於各種領域,包括手寫數字識別、人臉識別、文本分類、生物資訊學和資料庫行銷。在本書中,我們將對這個主題進行簡介。我們從一個簡單的支持向量機開始,進行二元分類,然後考慮多類別分類以及在噪聲存在下的學習。我們展示了這個框架可以擴展到許多其他情境,例如實值輸出的預測、新穎性檢測以及處理複雜輸出結構(如解析樹)。最後,我們概述了在實踐中使用的主要類型的核(kernels),以及如何從多種類型的輸入數據中學習和進行預測。

目錄:
支持向量機進行分類 / 基於核的模型 / 使用核進行學習