Formation Control of Multi-Agent Systems: A Graph Rigidity Approach
暫譯: 多智能體系統的編隊控制:圖剛性方法

Marcio de Queiroz, Xiaoyu Cai, Matthew Feemster

  • 出版商: Wiley
  • 出版日期: 2019-04-08
  • 售價: $5,160
  • 貴賓價: 9.5$4,902
  • 語言: 英文
  • 頁數: 208
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1118887441
  • ISBN-13: 9781118887448
  • 海外代購書籍(需單獨結帳)

商品描述

Formation Control of Multi-Agent Systems: A Graph Rigidity Approach

Marcio de Queiroz, Louisiana State University, USA

Xiaoyu Cai, FARO Technologies, USA

Matthew Feemster, U.S. Naval Academy, USA

A comprehensive guide to formation control of multi-agent systems using rigid graph theory

This book is the first to provide a comprehensive and unified treatment of the subject of graph rigidity-based formation control of multi-agent systems. Such systems are relevant to a variety of emerging engineering applications, including unmanned robotic vehicles and mobile sensor networks. Graph theory, and rigid graphs in particular, provides a natural tool for describing the multi-agent formation shape as well as the inter-agent sensing, communication, and control topology.

Beginning with an introduction to rigid graph theory, the contents of the book are organized by the agent dynamic model (single integrator, double integrator, and mechanical dynamics) and by the type of formation problem (formation acquisition, formation manoeuvring, and target interception). The book presents the material in ascending level of difficulty and in a self-contained manner; thus, facilitating reader understanding.

Key features:

  • Uses the concept of graph rigidity as the basis for describing the multi-agent formation geometry and solving formation control problems.
  • Considers different agent models and formation control problems.
  • Control designs throughout the book progressively build upon each other.
  • Provides a primer on rigid graph theory.
  • Combines theory, computer simulations, and experimental results.

Formation Control of Multi-Agent Systems: A Graph Rigidity Approach is targeted at researchers and graduate students in the areas of control systems and robotics. Prerequisite knowledge includes linear algebra, matrix theory, control systems, and nonlinear systems.

商品描述(中文翻譯)

**多代理系統的隊形控制:圖剛性方法**

Marcio de Queiroz,路易斯安那州立大學,美國
Xiaoyu Cai,FARO Technologies,美國
Matthew Feemster,美國海軍軍官學院,美國

**一本使用剛性圖論進行多代理系統隊形控制的綜合指南**

本書是首部提供基於圖剛性的多代理系統隊形控制主題的全面且統一的處理。這類系統與多種新興工程應用相關,包括無人機器人車輛和移動感測器網絡。圖論,特別是剛性圖,為描述多代理隊形形狀以及代理之間的感測、通信和控制拓撲提供了一種自然的工具。

本書從剛性圖論的介紹開始,內容根據代理動態模型(單積分器、雙積分器和機械動力學)以及隊形問題的類型(隊形獲取、隊形操控和目標攔截)進行組織。書中以逐步增加的難度和自成體系的方式呈現材料,從而促進讀者的理解。

主要特點:
- 使用圖剛性概念作為描述多代理隊形幾何和解決隊形控制問題的基礎。
- 考慮不同的代理模型和隊形控制問題。
- 書中的控制設計逐步建立在彼此之上。
- 提供剛性圖論的入門介紹。
- 結合理論、計算機模擬和實驗結果。

《多代理系統的隊形控制:圖剛性方法》針對控制系統和機器人領域的研究人員和研究生。先備知識包括線性代數、矩陣理論、控制系統和非線性系統。

作者簡介

MARCIO DE QUEIROZ joined the Department of Mechanical and Industrial Engineering at Louisiana State University in 2000, where he is currently the Roy O. Martin Lumber Company Professor. In 2005, he was the recipient of the NSF CAREER award. He has served as an Associate Editor for the IEEE Transactions on Automatic Control, the IEEE/ASME Transactions on Mechatronics, the ASME Journal of Dynamic Systems, Measurement, and Control, and the IEEE Transactions on Systems, Man, and Cybernetics - Part B. His research interests include nonlinear control, multi-agent systems, robotics, active magnetic and mechanical bearings, and biological/biomedical system modelling and control.

XIAOYU CAI joined the job search group in LinkedIn in 2018, where he is currently a software engineer. He received the 2013 Outstanding Research Assistant Award from the Department of Mechanical and Industrial Engineering at LSU for his doctoral research on formation control of multi-agent systems. His research interests include computer vision, reinforcement learning, nonlinear control theory and applications, multi-agent systems, robotics, process control, control of high-precision servo systems.

MATTHEW FEEMSTER joined the Weapons, Robotics, and Controls Engineering Department of the U.S. Naval Academy in Annapolis, MD, in 2002 and where he is currently an Associate Professor. His research interests are in the utilization of nonlinear control theory to promote mission capabilities in such fielded applications as autonomous air, ground, and marine vehicles.

作者簡介(中文翻譯)

MARCIO DE QUEIROZ 於2000年加入路易斯安那州立大學的機械與工業工程系,目前擔任Roy O. Martin Lumber Company教授。2005年,他獲得了NSF CAREER獎。他曾擔任《IEEE自動控制學報》、《IEEE/ASME機電一體化學報》、《ASME動態系統、測量與控制學報》以及《IEEE系統、人類與控制論學報 - B部分》的副編輯。他的研究興趣包括非線性控制、多智能體系統、機器人技術、主動磁性和機械軸承,以及生物/生醫系統建模與控制。

XIAOYU CAI 於2018年加入LinkedIn的求職小組,目前是一名軟體工程師。他因在路易斯安那州立大學機械與工業工程系的博士研究,專注於多智能體系統的編隊控制,獲得了2013年傑出研究助理獎。他的研究興趣包括計算機視覺、強化學習、非線性控制理論及其應用、多智能體系統、機器人技術、過程控制以及高精度伺服系統的控制。

MATTHEW FEEMSTER 於2002年加入美國海軍軍官學院的武器、機器人與控制工程系,目前擔任副教授。他的研究興趣在於利用非線性控制理論來提升自主空中、地面和海洋載具等現場應用的任務能力。