High-Dimensional Covariance Estimation
暫譯: 高維協方差估計

Pourahmadi, Mohsen

  • 出版商: Wiley
  • 出版日期: 2013-06-24
  • 售價: $3,590
  • 貴賓價: 9.5$3,411
  • 語言: 英文
  • 頁數: 208
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1118034295
  • ISBN-13: 9781118034293
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

相關主題

商品描述

Methods for estimating sparse and large covariance matrices

Covariance and correlation matrices play fundamental roles in every aspect of the analysis of multivariate data collected from a variety of fields including business and economics, health care, engineering, and environmental and physical sciences. High-Dimensional Covariance Estimation provides accessible and comprehensive coverage of the classical and modern approaches for estimating covariance matrices as well as their applications to the rapidly developing areas lying at the intersection of statistics and machine learning.

Recently, the classical sample covariance methodologies have been modified and improved upon to meet the needs of statisticians and researchers dealing with large correlated datasets. High-Dimensional Covariance Estimation focuses on the methodologies based on shrinkage, thresholding, and penalized likelihood with applications to Gaussian graphical models, prediction, and mean-variance portfolio management. The book relies heavily on regression-based ideas and interpretations to connect and unify many existing methods and algorithms for the task.

High-Dimensional Covariance Estimation features chapters on:

  • Data, Sparsity, and Regularization
  • Regularizing the Eigenstructure
  • Banding, Tapering, and Thresholding
  • Covariance Matrices
  • Sparse Gaussian Graphical Models
  • Multivariate Regression

The book is an ideal resource for researchers in statistics, mathematics, business and economics, computer sciences, and engineering, as well as a useful text or supplement for graduate-level courses in multivariate analysis, covariance estimation, statistical learning, and high-dimensional data analysis.

商品描述(中文翻譯)

估計稀疏和大型協方差矩陣的方法

協方差和相關矩陣在多變量數據分析的各個方面中扮演著基本角色,這些數據來自商業與經濟、醫療保健、工程以及環境和物理科學等多個領域。高維協方差估計提供了對於估計協方差矩陣的經典和現代方法的易懂且全面的介紹,以及它們在統計學與機器學習交叉快速發展領域中的應用。

最近,經典的樣本協方差方法已被修改和改進,以滿足處理大型相關數據集的統計學家和研究人員的需求。高維協方差估計專注於基於收縮、閾值和懲罰似然的方法,並應用於高斯圖形模型、預測和均值-方差投資組合管理。本書大量依賴基於回歸的思想和解釋,以連接和統一許多現有的方法和算法。

高維協方差估計的章節包括:


  • 數據、稀疏性和正則化

  • 正則化特徵結構

  • 帶狀、減弱和閾值處理

  • 協方差矩陣

  • 稀疏高斯圖形模型

  • 多變量回歸

本書是統計學、數學、商業與經濟、計算機科學和工程領域研究人員的理想資源,同時也是多變量分析、協方差估計、統計學習和高維數據分析研究生課程的有用教材或補充資料。

作者簡介

MOHSEN POURAHMADI, PhD, is Professor of Statistics at Texas A&M University. He is an elected member of the International Statistical Institute, a Fellow of the American Statistical Association, and a member of the American Mathematical Society. Dr. Pourahmadi is the author of Foundations of Time Series Analysis and Prediction Theory, also published by Wiley.

作者簡介(中文翻譯)

MOHSEN POURAHMADI 博士是德克薩斯農工大學的統計學教授。他是國際統計學會的選舉成員、美國統計學會的會士,以及美國數學學會的成員。Pourahmadi 博士是《時間序列分析與預測理論基礎》的作者,該書同樣由 Wiley 出版。