Statistical Analysis for High-Dimensional Data(Hardcover)
暫譯: 高維數據的統計分析(精裝版)
- 出版商: Springer
- 出版日期: 2016-02-17
- 售價: $6,780
- 貴賓價: 9.5 折 $6,441
- 語言: 英文
- 頁數: 306
- 裝訂: Hardcover
- ISBN: 3319270974
- ISBN-13: 9783319270975
海外代購書籍(需單獨結帳)
商品描述
This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014.
The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection.
Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.
商品描述(中文翻譯)
本書收錄了2014年5月在挪威洛福敦群島Nyvågar舉行的阿貝爾研討會(The Abel Symposium on Statistical Analysis for High Dimensional Data)的研究貢獻。
研討會的重點是針對「大數據」情境中進行推斷所專門開發的統計和機器學習方法,特別是與基因組應用相關的內容。貢獻者們是高維推斷統計理論領域中最傑出的研究者之一,他們提出了新的理論和方法,以及具有挑戰性的應用和計算解決方案。具體主題包括變數選擇與篩選、懲罰回歸、稀疏性、閾值處理、低維結構、計算挑戰、非凸情境、學習圖形模型、稀疏協方差和精度矩陣、半參數和非參數公式、多重測試、分類、因子模型、聚類和預選。
本書突顯了前沿研究並指引未來的研究方向,將使計算生物學、統計學和機器學習社群的研究生和研究人員受益。