An Introduction to Probabilistic Number Theory (Hardcover)
暫譯: 概率數論導論 (精裝版)
Kowalski, Emmanuel
- 出版商: Cambridge
- 出版日期: 2021-05-06
- 售價: $2,100
- 貴賓價: 9.5 折 $1,995
- 語言: 英文
- 頁數: 250
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1108840965
- ISBN-13: 9781108840965
-
相關分類:
機率統計學 Probability-and-statistics
立即出貨 (庫存 < 3)
買這商品的人也買了...
-
$2,500$2,450 -
$1,480$1,450 -
$1,452Beautiful Data: The Stories Behind Elegant Data Solutions (Paperback)
-
$3,760$3,572 -
$1,960$1,862 -
$4,530$4,304 -
$3,500$3,325 -
$1,260$1,235 -
$1,980$1,940 -
$2,980$2,831 -
$1,617Deep Learning (Hardcover)
-
$1,760$1,672 -
$1,460Introduction to the Theory of Computation, 3/e (Hardcover)
-
$2,250$2,138 -
$8,470$8,047 -
$7,250$6,888 -
$1,680$1,646 -
$2,550$2,423 -
$1,810$1,720 -
$2,850$2,708 -
$2,040$1,938
相關主題
商品描述
Despite its seemingly deterministic nature, the study of whole numbers, especially prime numbers, has many interactions with probability theory, the theory of random processes and events. This surprising connection was first discovered around 1920, but in recent years the links have become much deeper and better understood. Aimed at beginning graduate students, this textbook is the first to explain some of the most modern parts of the story. Such topics include the Chebychev bias, universality of the Riemann zeta function, exponential sums and the bewitching shapes known as Kloosterman paths. Emphasis is given throughout to probabilistic ideas in the arguments, not just the final statements, and the focus is on key examples over technicalities. The book develops probabilistic number theory from scratch, with short appendices summarizing the most important background results from number theory, analysis and probability, making it a readable and incisive introduction to this beautiful area of mathematics.
商品描述(中文翻譯)
儘管整數,特別是質數,似乎具有決定論的特性,但其研究與概率論、隨機過程和事件的理論之間有著許多互動。這一驚人的聯繫最早是在1920年左右被發現,但近年來這些聯繫變得更加深入且更易理解。本教科書旨在為初學的研究生提供指導,是第一本解釋這些現代故事中某些部分的書籍。這些主題包括切比雪夫偏差(Chebychev bias)、黎曼ζ函數的普遍性(universality of the Riemann zeta function)、指數和(exponential sums)以及被稱為克魯斯特曼路徑(Kloosterman paths)的迷人形狀。全書強調在論證中的概率性思維,而不僅僅是最終的陳述,並且重點放在關鍵範例上,而非技術細節。這本書從零開始發展概率數論,附錄中簡要總結了數論、分析和概率中最重要的背景結果,使其成為這一美麗數學領域的可讀且深刻的入門書籍。