Complex Analysis (Princeton Lectures in Analysis, No. 2) (Hardcover)
暫譯: 複變分析(普林斯頓分析講座,第2冊)(精裝本)

Elias M. Stein, Rami Shakarchi

買這商品的人也買了...

相關主題

商品描述

With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle.

With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory.

Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences.

The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.

商品描述(中文翻譯)

隨著這第二卷的出版,我們進入了複雜分析的迷人世界。從第一個定理開始,結果的優雅和廣泛性便顯而易見。起點是將最初針對實數的函數擴展到定義在複數上的函數的簡單想法。從這裡開始,我們進入全純函數的主要性質,其證明通常簡短且相當具啟發性:柯西定理、留數、解析延續、論證原則。

在這樣的背景下,讀者準備好學習大量額外的材料,將該主題與數學的其他領域聯繫起來:通過輪廓積分處理的傅立葉變換、ζ函數和質數定理,以及對橢圓函數的介紹,最終應用於組合學和數論。

徹底發展一個具有多重分支的主題,同時在概念洞察和嚴謹分析的技術基礎之間取得謹慎的平衡,《複雜分析》將受到數學、物理、工程及其他科學學生的歡迎。

《普林斯頓分析講座》代表了一項持續的努力,旨在介紹數學分析的核心領域,同時也展示它們之間的有機統一。在其四卷計劃中,第二卷《複雜分析》通過大量的例子和應用,突顯了某些分析思想對數學其他領域及各種科學的深遠影響。斯坦和沙卡爾奇從介紹傅立葉級數和積分開始,深入探討複雜分析;測度和積分理論,以及希爾伯特空間;最後,還包括功能分析、分佈和概率論的基本元素等進一步主題。