Bandit Algorithms (Hardcover)
暫譯: 盜賊演算法 (精裝版)

Lattimore, Tor, Szepesvári, Csaba

  • 出版商: Cambridge
  • 出版日期: 2020-09-10
  • 售價: $2,200
  • 貴賓價: 9.5$2,090
  • 語言: 英文
  • 頁數: 536
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1108486827
  • ISBN-13: 9781108486828
  • 相關分類: Algorithms-data-structures
  • 立即出貨 (庫存=1)

買這商品的人也買了...

商品描述

Decision-making in the face of uncertainty is a significant challenge in machine learning, and the multi-armed bandit model is a commonly used framework to address it. This comprehensive and rigorous introduction to the multi-armed bandit problem examines all the major settings, including stochastic, adversarial, and Bayesian frameworks. A focus on both mathematical intuition and carefully worked proofs makes this an excellent reference for established researchers and a helpful resource for graduate students in computer science, engineering, statistics, applied mathematics and economics. Linear bandits receive special attention as one of the most useful models in applications, while other chapters are dedicated to combinatorial bandits, ranking, non-stationary problems, Thompson sampling and pure exploration. The book ends with a peek into the world beyond bandits with an introduction to partial monitoring and learning in Markov decision processes.

商品描述(中文翻譯)

在不確定性面前做出決策是機器學習中的一個重大挑戰,而多臂賭徒模型是一個常用的框架來解決這個問題。本書對多臂賭徒問題進行了全面而嚴謹的介紹,探討了所有主要的設定,包括隨機、對抗性和貝葉斯框架。書中同時強調數學直覺和仔細推導的證明,使其成為成熟研究者的優秀參考資料,也為計算機科學、工程、統計學、應用數學和經濟學的研究生提供了有用的資源。線性賭徒作為應用中最有用的模型之一,受到特別關注,而其他章節則專注於組合賭徒、排名、非平穩問題、湯普森取樣和純探索。本書最後介紹了超越賭徒的世界,探討了部分監控和馬可夫決策過程中的學習。