Foundations of Data Science (Hardcover)
暫譯: 數據科學基礎 (精裝版)
Blum, Avrim, Hopcroft, John, Kannan, Ravi
- 出版商: Cambridge
- 出版日期: 2020-01-23
- 售價: $1,200
- 貴賓價: 9.8 折 $1,176
- 語言: 英文
- 頁數: 432
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1108485065
- ISBN-13: 9781108485067
-
相關分類:
Machine Learning
立即出貨(限量) (庫存=1)
買這商品的人也買了...
-
$1,188Fedora 11 and Red Hat Enterprise Linux Bible (Paperback) -
離散數學 最新修訂版$800$632 -
Learning From Data (Hardcover)$1,200$1,176 -
Synchronization Techniques for Digital Receivers (Hardcover)$14,760$14,022 -
$1,617Deep Learning (Hardcover) -
演算法 -- 使用 C++ 虛擬碼, 5/e (Foundations of Algorithms, 5/e)$700$553 -
大數據基礎與實務 (推薦:張善政)$550$539 -
為你自己學 Git$500$425 -
$1,359機器學習 : 貝葉斯和優化方法 (英文版)(Machine Learning: A Bayesian and Optimization Perspective) -
Introduction to the Theory of Computation, 3/e (Hardcover)$1,490$1,460 -
Python 資料科學學習手冊 (Python Data Science Handbook: Essential Tools for Working with Data)$780$616 -
High-Dimensional Statistics: A Non-Asymptotic Viewpoint (Hardcover)$1,680$1,646 -
$301Unreal Engine 4 遊戲開發指南 -
$602Unreal Engine 4 學習總動員:材質渲染 -
$594Unreal Engine 4 學習總動員:動畫設計 -
$594Unreal Engine 4 學習總動員:遊戲開發 -
敏捷大師精選 (Best Agile Articles of 2018)$750$585 -
Machine Learning Refined: Foundations, Algorithms, and Applications, 2/e (Hardcover)$1,680$1,646 -
Mathematics for Machine Learning (Paperback)$1,520$1,490 -
設計重構:25個管理技術債的技巧消除軟體設計臭味 (Refactoring for Software Design Smells: Managing Technical Debt)$520$406 -
強健的 Python|撰寫潔淨且可維護的程式碼 (Robust Python: Write Clean and Maintainable Code)$680$537 -
Template Metaprogramming with C++: Learn everything about C++ templates and unlock the power of template metaprogramming (Paperback)$1,830$1,739 -
邁向 Linux 工程師之路:Superuser 一定要懂的技術與運用, 3/e (How Linux Works : What Every Superuser Should Know, 3/e)$780$608 -
精通無瑕程式碼:工程師也能斷捨離!消除複雜度、提升效率的 17個關鍵技法 (The Art of Clean Code: Best Practices to Eliminate Complexity and Simplify Your Life)$600$468 -
深度學習詳解|台大李宏毅老師機器學習課程精粹$750$593
商品描述
This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.
商品描述(中文翻譯)
本書介紹了資料科學的數學和演算法基礎,包括機器學習、高維幾何以及大型網絡的分析。主題包括高維資料的反直覺特性、重要的線性代數技術如奇異值分解(singular value decomposition)、隨機遊走(random walks)和馬可夫鏈(Markov chains)的理論、機器學習的基本概念及重要演算法、聚類的演算法與分析、大型網絡的機率模型、表示學習(representation learning)包括主題建模(topic modelling)和非負矩陣分解(non-negative matrix factorization)、小波(wavelets)和壓縮感知(compressed sensing)。本書發展了重要的機率技術,包括大數法則(law of large numbers)、尾部不等式(tail inequalities)、隨機投影的分析、機器學習中的泛化保證(generalization guarantees)以及用於分析大型隨機圖的相變分析的矩方法(moment methods)。此外,還討論了重要的結構和複雜度度量,如矩陣範數(matrix norms)和 VC 維度(VC-dimension)。本書適合用於本科生和研究生的資料演算法設計與分析課程。