Methods in Algorithmic Analysis (Hardcover)
暫譯: 演算法分析方法 (精裝版)
Vladimir A. Dobrushkin
- 出版商: CRC
- 出版日期: 2009-11-01
- 售價: $3,150
- 貴賓價: 9.5 折 $2,993
- 語言: 英文
- 頁數: 824
- 裝訂: Hardcover
- ISBN: 1420068296
- ISBN-13: 9781420068290
-
相關分類:
Algorithms-data-structures
立即出貨 (庫存=1)
買這商品的人也買了...
-
$880$695 -
$880$695 -
$980$774 -
$1,200$948 -
$720$569 -
$560$532 -
$620$527 -
$880$695 -
$690$587 -
$520$442 -
$1,590$1,511 -
$490$417 -
$680$537 -
$750$638 -
$950$808 -
$820$648 -
$580$458 -
$800$760 -
$680$537 -
$530$419 -
$490$417 -
$420$332 -
$520$442 -
$650$514 -
$580$458
商品描述
Explores the Impact of the Analysis of Algorithms on Many Areas within and beyond Computer Science
A flexible, interactive teaching format enhanced by a large selection of examples and exercises
Developed from the author’s own graduate-level course, Methods in Algorithmic Analysis presents numerous theories, techniques, and methods used for analyzing algorithms. It exposes students to mathematical techniques and methods that are practical and relevant to theoretical aspects of computer science.
After introducing basic mathematical and combinatorial methods, the text focuses on various aspects of probability, including finite sets, random variables, distributions, Bayes’ theorem, and Chebyshev inequality. It explores the role of recurrences in computer science, numerical analysis, engineering, and discrete mathematics applications. The author then describes the powerful tool of generating functions, which is demonstrated in enumeration problems, such as probabilistic algorithms, compositions and partitions of integers, and shuffling. He also discusses the symbolic method, the principle of inclusion and exclusion, and its applications. The book goes on to show how strings can be manipulated and counted, how the finite state machine and Markov chains can help solve probabilistic and combinatorial problems, how to derive asymptotic results, and how convergence and singularities play leading roles in deducing asymptotic information from generating functions. The final chapter presents the definitions and properties of the mathematical infrastructure needed to accommodate generating functions.
Accompanied by more than 1,000 examples and exercises, this comprehensive, classroom-tested text develops students’ understanding of the mathematical methodology behind the analysis of algorithms. It emphasizes the important relation between continuous (classical) mathematics and discrete mathematics, which is the basis of computer science.
商品描述(中文翻譯)
探索演算法分析對計算機科學內部及外部多個領域的影響
一種靈活、互動的教學格式,增強了大量範例和練習的選擇
《演算法分析方法》是根據作者自己所教授的研究生課程發展而成,介紹了用於分析演算法的眾多理論、技術和方法。它使學生接觸到實用且與計算機科學理論方面相關的數學技術和方法。
在介紹基本的數學和組合方法後,文本重點關注概率的各個方面,包括有限集合、隨機變數、分佈、貝葉斯定理和切比雪夫不等式。它探討了遞迴在計算機科學、數值分析、工程學和離散數學應用中的角色。作者接著描述了生成函數這一強大工具,並在計數問題中進行演示,例如概率演算法、整數的組合和劃分以及洗牌。他還討論了符號方法、包含與排除原則及其應用。本書接著展示了如何操作和計數字串,有限狀態機和馬可夫鏈如何幫助解決概率和組合問題,如何推導漸近結果,以及收斂和奇點在從生成函數推導漸近信息中所扮演的重要角色。最後一章介紹了支持生成函數所需的數學基礎設施的定義和性質。
本書配有超過1,000個範例和練習,這本全面且經過課堂測試的文本發展了學生對演算法分析背後數學方法論的理解。它強調了連續(古典)數學與離散數學之間的重要關係,這是計算機科學的基礎。