Data Mining and Machine Learning: Fundamental Concepts and Algorithms, 2/e (Hardcover)
暫譯: 資料探勘與機器學習:基本概念與演算法,第二版(精裝本)
Zaki, Mohammed J., Meira Jr, Wagner
- 出版商: Cambridge
- 出版日期: 2020-03-12
- 售價: $1,860
- 貴賓價: 9.8 折 $1,823
- 語言: 英文
- 頁數: 776
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1108473989
- ISBN-13: 9781108473989
-
相關分類:
Machine Learning、Algorithms-data-structures、Data-mining
-
相關翻譯:
數據挖掘與機器學習 : 基礎概念和算法 (原書2版) (Data Mining and Machine Learning: Fundamental Concepts and Algorithms, 2/e) (簡中版)
立即出貨 (庫存=1)
買這商品的人也買了...
-
$880$695 -
$390$308 -
$750$713 -
$1,156Digital Control Systems Analysis & Design, 4/e (IE-Paperback) (書況較舊書側內頁有些許黴斑,不介意在下單)
-
$1,580$1,501 -
$450$356 -
$360$281 -
$520$411 -
$580$458 -
$1,580$1,501 -
$520$494 -
$700$665 -
$580$458 -
$4,650$4,418 -
$680$537 -
$580$551 -
$1,420$1,392 -
$580$458 -
$620$490 -
$505SQL 數據分析
-
$505數據庫高效優化 : 架構、規範與 SQL 技巧
-
$780$616 -
$620$310 -
$650$514 -
$2,520Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems, 3/e (Paperback)
商品描述
The fundamental algorithms in data mining and machine learning form the basis of data science, utilizing automated methods to analyze patterns and models for all kinds of data in applications ranging from scientific discovery to business analytics. This textbook for senior undergraduate and graduate courses provides a comprehensive, in-depth overview of data mining, machine learning and statistics, offering solid guidance for students, researchers, and practitioners. The book lays the foundations of data analysis, pattern mining, clustering, classification and regression, with a focus on the algorithms and the underlying algebraic, geometric, and probabilistic concepts. New to this second edition is an entire part devoted to regression methods, including neural networks and deep learning.
商品描述(中文翻譯)
資料探勘和機器學習中的基本演算法構成了資料科學的基礎,利用自動化方法分析各種資料的模式和模型,應用範圍從科學發現到商業分析。本書是為高年級本科生和研究生課程編寫的教科書,提供了資料探勘、機器學習和統計學的全面深入概述,為學生、研究人員和實務工作者提供了堅實的指導。本書奠定了資料分析、模式探勘、聚類、分類和回歸的基礎,重點介紹演算法及其背後的代數、幾何和機率概念。本第二版新增了一整部分專門介紹回歸方法,包括神經網路和深度學習。