Algorithmic Aspects of Machine Learning (Hardcover)
Ankur Moitra
- 出版商: Cambridge
- 出版日期: 2018-09-27
- 售價: $3,620
- 貴賓價: 9.5 折 $3,439
- 語言: 英文
- 頁數: 158
- 裝訂: Hardcover
- ISBN: 1107184584
- ISBN-13: 9781107184589
-
相關分類:
Machine Learning、Algorithms-data-structures
-
相關翻譯:
機器學習算法 (簡中版)
-
其他版本:
Algorithmic Aspects of Machine Learning (Paperback)
相關主題
商品描述
This book bridges theoretical computer science and machine learning by exploring what the two sides can teach each other. It emphasizes the need for flexible, tractable models that better capture not what makes machine learning hard, but what makes it easy. Theoretical computer scientists will be introduced to important models in machine learning and to the main questions within the field. Machine learning researchers will be introduced to cutting-edge research in an accessible format, and gain familiarity with a modern, algorithmic toolkit, including the method of moments, tensor decompositions and convex programming relaxations. The treatment beyond worst-case analysis is to build a rigorous understanding about the approaches used in practice and to facilitate the discovery of exciting, new ways to solve important long-standing problems.
商品描述(中文翻譯)
這本書橋接了理論計算機科學與機器學習,探討這兩者可以互相學習的內容。它強調需要靈活且可處理的模型,以更好地捕捉機器學習中使其變得簡單的因素,而非使其變得困難的因素。理論計算機科學家將接觸到機器學習中的重要模型以及該領域的主要問題。機器學習研究人員將以易於理解的格式接觸到前沿研究,並熟悉現代的算法工具包,包括矩量法、張量分解和凸規劃鬆弛。超越最壞情況分析的處理方式是建立對實踐中所用方法的嚴謹理解,並促進發現解決重要長期問題的新方法。