Kernelization: Theory of Parameterized Preprocessing
暫譯: 核心化:參數化預處理理論
Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, Meirav Zehavi
- 出版商: Cambridge
- 出版日期: 2019-02-28
- 售價: $3,050
- 貴賓價: 9.5 折 $2,898
- 語言: 英文
- 頁數: 500
- 裝訂: Hardcover
- ISBN: 1107057760
- ISBN-13: 9781107057760
海外代購書籍(需單獨結帳)
相關主題
商品描述
Preprocessing, or data reduction, is a standard technique for simplifying and speeding up computation. Written by a team of experts in the field, this book introduces a rapidly developing area of preprocessing analysis known as kernelization. The authors provide an overview of basic methods and important results, with accessible explanations of the most recent advances in the area, such as meta-kernelization, representative sets, polynomial lower bounds, and lossy kernelization. The text is divided into four parts, which cover the different theoretical aspects of the area: upper bounds, meta-theorems, lower bounds, and beyond kernelization. The methods are demonstrated through extensive examples using a single data set. Written to be self-contained, the book only requires a basic background in algorithmics and will be of use to professionals, researchers and graduate students in theoretical computer science, optimization, combinatorics, and related fields.
商品描述(中文翻譯)
預處理或數據縮減是一種標準技術,用於簡化和加速計算。本書由該領域的專家團隊撰寫,介紹了一個快速發展的預處理分析領域,稱為核化(kernelization)。作者提供了基本方法和重要結果的概述,並對該領域最新進展進行了易於理解的解釋,例如元核化(meta-kernelization)、代表性集合(representative sets)、多項式下界(polynomial lower bounds)和有損核化(lossy kernelization)。文本分為四個部分,涵蓋該領域的不同理論方面:上界(upper bounds)、元定理(meta-theorems)、下界(lower bounds)以及超越核化(beyond kernelization)。這些方法通過使用單一數據集的廣泛示例進行演示。本書旨在自成一體,只需具備基本的算法背景,將對理論計算機科學、優化、組合數學及相關領域的專業人士、研究人員和研究生有所幫助。