Set Theory (Paperback)
暫譯: 集合論 (平裝本)

Kenneth Kunen

  • 出版商: College Publications
  • 出版日期: 2011-11-02
  • 售價: $1,360
  • 貴賓價: 9.5$1,292
  • 語言: 英文
  • 頁數: 412
  • 裝訂: Paperback
  • ISBN: 1848900503
  • ISBN-13: 9781848900509
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

商品描述

This book is designed for readers who know elementary mathematical logic and axiomatic set theory, and who want to learn more about set theory. The primary focus of the book is on the independence proofs. Most famous among these is the independence of the Continuum Hypothesis (CH); that is, there are models of the axioms of set theory (ZFC) in which CH is true, and other models in which CH is false. More generally, cardinal exponentiation on the regular cardinals can consistently be anything not contradicting the classical theorems of Cantor and König. The basic methods for the independence proofs are the notion of constructibility, introduced by Gödel, and the method of forcing, introduced by Cohen. This book describes these methods in detail, verifi es the basic independence results for cardinal exponentiation, and also applies these methods to prove the independence of various mathematical questions in measure theory and general topology. Before the chapters on forcing, there is a fairly long chapter on "infi nitary combinatorics". This consists of just mathematical theorems (not independence results), but it stresses the areas of mathematics where set-theoretic topics (such as cardinal arithmetic) are relevant. There is, in fact, an interplay between infi nitary combinatorics and independence proofs. Infi nitary combinatorics suggests many set-theoretic questions that turn out to be independent of ZFC, but it also provides the basic tools used in forcing arguments. In particular, Martin's Axiom, which is one of the topics under infi nitary combinatorics, introduces many of the basic ingredients of forcing.

商品描述(中文翻譯)

本書旨在為具備基本數學邏輯和公理集合論知識的讀者提供進一步學習集合論的機會。書中的主要焦點是獨立性證明。其中最著名的是連續體假設(Continuum Hypothesis, CH)的獨立性;也就是說,存在一些集合論公理(ZFC)的模型,其中 CH 為真,而其他模型中 CH 為假。更一般地說,對於常規基數的基數指數運算可以一致地是任何不違背 Cantor 和 König 的經典定理的值。獨立性證明的基本方法是由哥德爾(Gödel)提出的可構造性概念,以及由科恩(Cohen)提出的強迫法(forcing method)。本書詳細描述這些方法,驗證基數指數運算的基本獨立性結果,並將這些方法應用於證明測度論和一般拓撲學中各種數學問題的獨立性。在強迫法的章節之前,有一個相當長的章節專門討論「無窮組合學」。這部分僅包含數學定理(而非獨立性結果),但強調了集合論主題(如基數算術)相關的數學領域。事實上,無窮組合學與獨立性證明之間存在相互作用。無窮組合學提出了許多與 ZFC 獨立的集合論問題,但它也提供了強迫論證中使用的基本工具。特別是,馬丁公理(Martin's Axiom)是無窮組合學中的一個主題,介紹了強迫法的許多基本成分。