此商品已下架,若仍需天瓏代為查詢或代購書籍,請與門市客服人員聯繫,或 E-mail 至 service@tenlong.com.tw 將有專人為您服務。

An Introduction to Proofs with Set Theory
暫譯: 集合論證明入門

Ashlock, Daniel, Lee, Colin

  • 出版商: Morgan & Claypool
  • 出版日期: 2020-06-24
  • 售價: $3,530
  • 貴賓價: 9.5$3,354
  • 語言: 英文
  • 頁數: 249
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1681738813
  • ISBN-13: 9781681738819
  • 海外代購書籍(需單獨結帳)

商品描述

This text is intended as an introduction to mathematical proofs for students. It is distilled from the lecture notes for a course focused on set theory subject matter as a means of teaching proofs. Chapter 1 contains an introduction and provides a brief summary of some background material students may be unfamiliar with. Chapters 2 and 3 introduce the basics of logic for students not yet familiar with these topics. Included is material on Boolean logic, propositions and predicates, logical operations, truth tables, tautologies and contradictions, rules of inference and logical arguments. Chapter 4 introduces mathematical proofs, including proof conventions, direct proofs, proof-by-contradiction, and proof-by-contraposition. Chapter 5 introduces the basics of naive set theory, including Venn diagrams and operations on sets. Chapter 6 introduces mathematical induction and recurrence relations. Chapter 7 introduces set-theoretic functions and covers injective, surjective, and bijective functions, as well as permutations. Chapter 8 covers the fundamental properties of the integers including primes, unique factorization, and Euclid's algorithm. Chapter 9 is an introduction to combinatorics; topics included are combinatorial proofs, binomial and multinomial coefficients, the Inclusion-Exclusion principle, and counting the number of surjective functions between finite sets. Chapter 10 introduces relations and covers equivalence relations and partial orders. Chapter 11 covers number bases, number systems, and operations. Chapter 12 covers cardinality, including basic results on countable and uncountable infinities, and introduces cardinal numbers. Chapter 13 expands on partial orders and introduces ordinal numbers. Chapter 14 examines the paradoxes of naive set theory and introduces and discusses axiomatic set theory. This chapter also includes Cantor's Paradox, Russel's Paradox, a discussion of axiomatic theories, an exposition on Zermelo‒Fraenkel Set Theory with the Axiom of Choice, and a brief explanation of G del's Incompleteness Theorems.

商品描述(中文翻譯)

本文本旨在為學生介紹數學證明。 內容提煉自一門專注於集合論的課程講義,作為教授證明的手段。第一章包含介紹並提供一些學生可能不熟悉的背景材料的簡要總結。第二章和第三章為尚未熟悉這些主題的學生介紹邏輯的基本概念。內容包括布爾邏輯、命題和謂詞、邏輯運算、真值表、重言式和矛盾、推理規則和邏輯論證。第四章介紹數學證明,包括證明慣例、直接證明、反證法和對立證明。第五章介紹幼稚集合論的基本概念,包括維恩圖和集合運算。第六章介紹數學歸納法和遞迴關係。第七章介紹集合論函數,涵蓋單射、滿射和雙射函數,以及排列。第八章涵蓋整數的基本性質,包括質數、唯一分解和歐幾里得算法。第九章是組合學的介紹;包括的主題有組合證明、二項式和多項式係數、包含-排除原則,以及計算有限集合之間滿射函數的數量。第十章介紹關係,涵蓋等價關係和偏序。第十一章涵蓋數字基數、數字系統和運算。第十二章涵蓋基數,包括可數和不可數無窮大的基本結果,並介紹基數。第十三章擴展偏序並介紹序數。第十四章檢視幼稚集合論的悖論,並介紹和討論公理集合論。本章還包括康托爾悖論、羅素悖論、公理理論的討論、帶選擇公理的澤梅洛-弗蘭克爾集合論的闡述,以及哥德爾不完備定理的簡要解釋。