The Gröbner Cover (Algorithms and Computation in Mathematics)
暫譯: Gröbner 覆蓋(數學中的演算法與計算)

Antonio Montes

  • 出版商: Springer
  • 出版日期: 2019-03-15
  • 售價: $5,640
  • 貴賓價: 9.5$5,358
  • 語言: 英文
  • 頁數: 268
  • 裝訂: Hardcover
  • ISBN: 303003903X
  • ISBN-13: 9783030039035
  • 相關分類: Algorithms-data-structures
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book is divided into two parts, one theoretical and one focusing on applications, and offers a complete description of the Canonical Gröbner Cover, the most accurate algebraic method for discussing parametric polynomial systems. It also includes applications to the Automatic Deduction of Geometric Theorems, Loci Computation and Envelopes. 

The theoretical part is a self-contained exposition on the theory of Parametric Gröbner Systems and Bases. It begins with Weispfenning’s introduction of Comprehensive Gröbner Systems (CGS) in 1992, and provides a complete description of the Gröbner Cover (GC), which includes a canonical discussion of a set of parametric polynomial equations developed by Michael Wibmer and the author.  

In turn, the application part selects three problems for which the Gröbner Cover offers valuable new perspectives. The automatic deduction of geometric theorems (ADGT) becomes fully automatic and straightforward using GC, representing a major improvement on all previous methods. In terms of loci and envelope computation, GC makes it possible to introduce a taxonomy of the components and automatically compute it. The book also generalizes the definition of the envelope of a family of hypersurfaces, and provides algorithms for its computation, as well as for discussing how to determine the real envelope. 

All the algorithms described here have also been included in the software library “grobcov.lib” implemented in Singular by the author, and serve as a User Manual for it.

商品描述(中文翻譯)

本書分為兩個部分,一個是理論部分,另一個是應用部分,並提供了對於典範 Gröbner 覆蓋的完整描述,這是討論參數多項式系統的最準確代數方法。它還包括自動推導幾何定理、軌跡計算和包絡的應用。

理論部分是對參數 Gröbner 系統和基的自足性闡述。它從 Weispfenning 在 1992 年引入的綜合 Gröbner 系統(CGS)開始,並提供了對 Gröbner 覆蓋(GC)的完整描述,其中包括由 Michael Wibmer 和作者共同開發的一組參數多項式方程的典範討論。

應用部分則選擇了三個問題,這些問題的解決方案通過 Gröbner 覆蓋提供了有價值的新視角。使用 GC,自動推導幾何定理(ADGT)變得完全自動且簡單,這代表了對所有先前方法的重大改進。在軌跡和包絡計算方面,GC 使得引入組件的分類法並自動計算成為可能。本書還對一組超曲面的包絡的定義進行了概括,並提供了其計算的算法,以及討論如何確定實包絡的算法。

這裡描述的所有算法也已包含在作者在 Singular 中實現的軟體庫 “grobcov.lib” 中,並作為其用戶手冊。