Data Quality Fundamentals: A Practitioner's Guide to Building Trustworthy Data Pipelines (Paperback)
暫譯: 數據質量基礎:建立可信數據管道的實務指南 (平裝本)
Moses, Barr, Gavish, Lior, Vorwerck, Molly
- 出版商: O'Reilly
- 出版日期: 2022-10-11
- 定價: $2,290
- 售價: 8.8 折 $2,015
- 語言: 英文
- 頁數: 308
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1098112040
- ISBN-13: 9781098112042
-
相關分類:
大數據 Big-data、Data Science
-
相關翻譯:
資料品質管理:資料可靠性與資料品質問題解決之道 (簡中版)
立即出貨
買這商品的人也買了...
-
$580$452 -
$360$281 -
$420$357 -
$1,640$1,558 -
$1,840Architecture Patterns with Python: Enabling Test-Driven Development, Domain-Driven Design, and Event-Driven Microservices
-
$2,043$1,935 -
$2,150$2,043 -
$580$458 -
$450$383 -
$500$395 -
$599$473 -
$330$281 -
$499$394 -
$2,146Introduction to Algorithms, 4/e (Hardcover)
-
$380$323 -
$460$391 -
$780$616 -
$880$695 -
$2,240Building Evolutionary Architectures: Automated Software Governance, 2/e
-
$5,080$4,826 -
$534$507 -
$580$458 -
$499$394 -
$2,006Communication Patterns: A Guide for Developers and Architects (Paperback)
-
$650$507
相關主題
商品描述
Do your product dashboards look funky? Are your quarterly reports stale? Is the dataset you're using broken or just plain wrong? These problems affect almost every team, yet they're usually addressed on an ad hoc basis and in a reactive manner. If you answered yes to any of the questions above, this book is for you.
Many data engineering teams today face the "good pipelines, bad data" problem. It doesn't matter how advanced your data infrastructure is if the data you're piping is bad. In this book, Barr Moses, Lior Gavish, and Molly Vorwerck from the data reliability company Monte Carlo explain how to tackle data quality and trust at scale by leveraging best practices and technologies used by some of the world's most innovative companies.
- Build more trustworthy and reliable data pipelines
- Write scripts to make data checks and identify broken pipelines with data observability
- Program your own data quality monitors from scratch
- Develop and lead data quality initiatives at your company
- Generate a dashboard to highlight your company's key data assets
- Automate data lineage graphs across your data ecosystem
- Build anomaly detectors for your critical data assets
商品描述(中文翻譯)
您的產品儀表板看起來奇怪嗎?您的季度報告過時了嗎?您使用的數據集是壞的還是完全錯誤的?這些問題影響幾乎每個團隊,但通常是以臨時的方式和反應性的方式來解決。如果您對上述任何問題回答是,那麼這本書就是為您而寫的。
如今,許多數據工程團隊面臨著「良好的管道,壞的數據」問題。無論您的數據基礎設施多麼先進,如果您傳輸的數據是壞的,那都沒有意義。在這本書中,來自數據可靠性公司 Monte Carlo 的 Barr Moses、Lior Gavish 和 Molly Vorwerck 解釋了如何利用一些世界上最具創新性的公司的最佳實踐和技術來解決大規模的數據質量和信任問題。
- 建立更值得信賴和可靠的數據管道
- 編寫腳本以進行數據檢查並識別壞的管道,實現數據可觀察性
- 從零開始編寫自己的數據質量監控器
- 在您的公司開發和主導數據質量計劃
- 生成儀表板以突出您公司的關鍵數據資產
- 自動化整個數據生態系統中的數據血緣圖
- 為您的關鍵數據資產建立異常檢測器