Data Observability for Data Engineering: Proactive strategies for ensuring data accuracy and addressing broken data pipelines
暫譯: 數據可觀察性與數據工程:確保數據準確性及解決數據管道問題的主動策略
Pinto, Michele, Khammal, Sammy El
- 出版商: Packt Publishing
- 出版日期: 2023-12-29
- 售價: $1,880
- 貴賓價: 9.5 折 $1,786
- 語言: 英文
- 頁數: 228
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1804616028
- ISBN-13: 9781804616024
-
相關分類:
大數據 Big-data、Data Science
海外代購書籍(需單獨結帳)
相關主題
商品描述
Discover actionable steps to maintain healthy data pipelines to promote data observability within your teams with this essential guide to elevating data engineering practices
Key Features:
- Learn how to monitor your data pipelines in a scalable way
- Apply real-life use cases and projects to gain hands-on experience in implementing data observability
- Instil trust in your pipelines among data producers and consumers alike
- Purchase of the print or Kindle book includes a free PDF eBook
Book Description:
In the age of information, strategic management of data is critical to organizational success. The constant challenge lies in maintaining data accuracy and preventing data pipelines from breaking. Data Observability for Data Engineering is your definitive guide to implementing data observability successfully in your organization.
This book unveils the power of data observability, a fusion of techniques and methods that allow you to monitor and validate the health of your data. You'll see how it builds on data quality monitoring and understand its significance from the data engineering perspective. Once you're familiar with the techniques and elements of data observability, you'll get hands-on with a practical Python project to reinforce what you've learned. Toward the end of the book, you'll apply your expertise to explore diverse use cases and experiment with projects to seamlessly implement data observability in your organization.
Equipped with the mastery of data observability intricacies, you'll be able to make your organization future-ready and resilient and never worry about the quality of your data pipelines again.
What You Will Learn:
- Implement a data observability approach to enhance the quality of data pipelines
- Collect and analyze key metrics through coding examples
- Apply monkey patching in a Python module
- Manage the costs and risks associated with your data pipeline
- Understand the main techniques for collecting observability metrics
- Implement monitoring techniques for analytics pipelines in production
- Build and maintain a statistics engine continuously
Who this book is for:
This book is for data engineers, data architects, data analysts, and data scientists who have encountered issues with broken data pipelines or dashboards. Organizations seeking to adopt data observability practices and managers responsible for data quality and processes will find this book especially useful to increase the confidence of data consumers and raise awareness among producers regarding their data pipelines.
商品描述(中文翻譯)
發現可行的步驟,以維護健康的數據管道,促進團隊內的數據可觀察性,這是提升數據工程實踐的必備指南
主要特點:
- 學習如何以可擴展的方式監控您的數據管道
- 應用實際案例和項目,獲得實踐經驗以實施數據可觀察性
- 在數據生產者和消費者之間建立對您的管道的信任
- 購買印刷版或 Kindle 書籍包括免費 PDF 電子書
書籍描述:
在信息時代,數據的戰略管理對組織成功至關重要。持續的挑戰在於維護數據的準確性並防止數據管道中斷。《數據工程的數據可觀察性》是您在組織中成功實施數據可觀察性的權威指南。
本書揭示了數據可觀察性的力量,這是一種技術和方法的融合,讓您能夠監控和驗證數據的健康狀況。您將看到它如何建立在數據質量監控之上,並理解其在數據工程視角下的重要性。一旦您熟悉了數據可觀察性的技術和要素,您將通過一個實用的 Python 項目進行實踐,以鞏固所學的知識。在書的最後,您將運用您的專業知識探索多樣的用例,並實驗項目,以無縫地在您的組織中實施數據可觀察性。
掌握數據可觀察性的複雜性後,您將能夠使您的組織未來準備就緒且具韌性,再也不必擔心數據管道的質量。
您將學到什麼:
- 實施數據可觀察性方法以提升數據管道的質量
- 通過編碼示例收集和分析關鍵指標
- 在 Python 模塊中應用猴子補丁(monkey patching)
- 管理與您的數據管道相關的成本和風險
- 理解收集可觀察性指標的主要技術
- 在生產環境中實施分析管道的監控技術
- 持續構建和維護統計引擎
本書適合誰:
本書適合數據工程師、數據架構師、數據分析師和數據科學家,特別是那些遇到數據管道或儀表板中斷問題的人。尋求採用數據可觀察性實踐的組織以及負責數據質量和流程的管理者,將發現本書特別有用,以提高數據消費者的信心並提高生產者對其數據管道的認識。