Deep Learning for Crack-Like Object Detection
暫譯: 深度學習於裂縫類物體檢測的應用
Zhang, Kaige, Cheng, Heng-Da
- 出版商: CRC
- 出版日期: 2024-10-09
- 售價: $1,300
- 貴賓價: 9.5 折 $1,235
- 語言: 英文
- 頁數: 100
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1032181192
- ISBN-13: 9781032181196
-
相關分類:
DeepLearning
海外代購書籍(需單獨結帳)
商品描述
Accurately detecting crack localization is not an easy task. This book addresses important issues in detecting crack-like objects and provides a practical smart pavement surface inspection system using deep learning.
商品描述(中文翻譯)
準確檢測裂縫定位並不是一件容易的任務。本書探討了檢測類裂縫物體的重要議題,並提供了一個使用深度學習的實用智慧路面表面檢查系統。
作者簡介
Kaige Zhang has a B.S. degree (2011) in electronic engineering from the Harbin Institute of Technology, China, and a Ph.D. degree (2019) in computer science from Utah State University, USA. His research interests include computer vision, machine learning, and the applications on intelligent transportation systems, precision agriculture, and biomedical data analytics. Dr. Zhang has been the reviewer for many top journals in his research areas, such as IEEE Transactions on ITS, IEEE Trans. On T-IV, J. of Comput. in Civil Eng., Scientific Report, etc.
Heng-Da Cheng has a Ph.D. in Electrical Engineering from Purdue University, West Lafayette, IN, USA in 1985 under the supervision Prof. K. S. Fu. He is a Full Professor with the Department of Computer Science, Utah State University, Logan, UT. He has authored over 350 technical papers and is the Associate Editor of Pattern Recognition, Information Sciences, and New Mathematics and Natural Computation.
作者簡介(中文翻譯)
張凱歌於2011年獲得中國哈爾濱工業大學電子工程學士學位,並於2019年獲得美國猶他州立大學計算機科學博士學位。他的研究興趣包括計算機視覺、機器學習,以及在智能交通系統、精準農業和生物醫學數據分析上的應用。張博士曾擔任多個頂尖期刊的審稿人,這些期刊包括《IEEE交通運輸系統期刊》(IEEE Transactions on ITS)、《IEEE計算機學會期刊》(IEEE Trans. On T-IV)、《土木工程計算機期刊》(J. of Comput. in Civil Eng.)、《科學報告》(Scientific Report)等。
鄭亨達於1985年在美國印第安納州西拉法葉的普渡大學獲得電機工程博士學位,指導教授為K. S. Fu教授。他是猶他州立大學計算機科學系的正教授,已發表超過350篇技術論文,並擔任《模式識別》(Pattern Recognition)、《資訊科學》(Information Sciences)以及《新數學與自然計算》(New Mathematics and Natural Computation)的副編輯。