Hands-On Vision and Behavior for Self-Driving Cars: Explore visual perception, lane detection, and object classification with Python 3 and OpenCV 4
暫譯: 實作自駕車的視覺與行為:使用 Python 3 和 OpenCV 4 探索視覺感知、車道偵測與物體分類
Venturi, Luca, Korda, Krishtof
- 出版商: Packt Publishing
- 出版日期: 2020-10-23
- 售價: $1,980
- 貴賓價: 9.5 折 $1,881
- 語言: 英文
- 頁數: 374
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1800203586
- ISBN-13: 9781800203587
-
相關分類:
影像辨識 Image-recognition、Python、程式語言、自駕車
-
相關翻譯:
自動駕駛汽車視覺和行為實踐用 Python3 和 OpenCV4 探索視覺感知、車道檢測和物體分類 (簡中版)
立即出貨 (庫存=1)
商品描述
A practical guide to learning visual perception for self-driving cars for computer vision and autonomous system engineers
Key Features
- Explore the building blocks of the visual perception system in self-driving cars
- Identify objects and lanes to define the boundary of driving surfaces using open-source tools like OpenCV and Python
- Improve the object detection and classification capabilities of systems with the help of neural networks
Book Description
The visual perception capabilities of a self-driving car are powered by computer vision. The work relating to self-driving cars can be broadly classified into three components - robotics, computer vision, and machine learning. This book provides existing computer vision engineers and developers with the unique opportunity to be associated with this booming field.
You will learn about computer vision, deep learning, and depth perception applied to driverless cars. The book provides a structured and thorough introduction, as making a real self-driving car is a huge cross-functional effort. As you progress, you will cover relevant cases with working code, before going on to understand how to use OpenCV, TensorFlow and Keras to analyze video streaming from car cameras. Later, you will learn how to interpret and make the most of lidars (light detection and ranging) to identify obstacles and localize your position. You'll even be able to tackle core challenges in self-driving cars such as finding lanes, detecting pedestrian and crossing lights, performing semantic segmentation, and writing a PID controller.
By the end of this book, you'll be equipped with the skills you need to write code for a self-driving car running in a driverless car simulator, and be able to tackle various challenges faced by autonomous car engineers.
What You Will Learn
- Understand how to perform camera calibration
- Become well-versed with how lane detection works in self-driving cars using OpenCV
- Explore behavioral cloning by self-driving in a video-game simulator
- Get to grips with using lidars
- Discover how to configure the controls for autonomous vehicles
- Use object detection and semantic segmentation to locate lanes, cars, and pedestrians
- Write a PID controller to control a self-driving car running in a simulator
Who this book is for
This book is for software engineers who are interested in learning about technologies that drive the autonomous car revolution. Although basic knowledge of computer vision and Python programming is required, prior knowledge of advanced deep learning and how to use sensors (lidar) is not needed.
商品描述(中文翻譯)
自駕車視覺感知學習的實用指南,適用於計算機視覺和自主系統工程師
主要特點
- 探索自駕車視覺感知系統的基本構建塊
- 使用開源工具如 OpenCV 和 Python 識別物體和車道,以定義駕駛表面的邊界
- 借助神經網絡提高系統的物體檢測和分類能力
書籍描述
自駕車的視覺感知能力由計算機視覺驅動。與自駕車相關的工作大致可分為三個組成部分 - 機器人技術、計算機視覺和機器學習。本書為現有的計算機視覺工程師和開發者提供了與這一蓬勃發展的領域相關的獨特機會。
您將學習計算機視覺、深度學習和應用於無人駕駛汽車的深度感知。本書提供了結構化且全面的介紹,因為製作一輛真正的自駕車是一項龐大的跨功能工作。隨著進展,您將涵蓋相關案例及其工作代碼,然後了解如何使用 OpenCV、TensorFlow 和 Keras 來分析來自汽車攝像頭的視頻流。之後,您將學習如何解釋和充分利用激光雷達(lidar)來識別障礙物和定位您的位置。您甚至能夠解決自駕車的核心挑戰,例如尋找車道、檢測行人和交通信號燈、執行語義分割以及編寫 PID 控制器。
在本書結束時,您將具備編寫自駕車代碼的技能,能夠在無人駕駛汽車模擬器中運行,並能夠應對自主汽車工程師面臨的各種挑戰。
您將學到什麼
- 了解如何進行相機校準
- 熟悉自駕車中車道檢測的工作原理,使用 OpenCV
- 通過在視頻遊戲模擬器中自駕探索行為克隆
- 掌握使用激光雷達的技巧
- 了解如何配置自主車輛的控制系統
- 使用物體檢測和語義分割來定位車道、汽車和行人
- 編寫 PID 控制器以控制在模擬器中運行的自駕車
本書適合誰
本書適合對推動自主汽車革命的技術感興趣的軟體工程師。雖然需要具備基本的計算機視覺和 Python 編程知識,但不需要具備高級深度學習和如何使用傳感器(激光雷達)的先前知識。