Bayesian Hierarchical Models: With Applications Using R, Second Edition
暫譯: 貝葉斯層級模型:使用 R 的應用(第二版)
Congdon, Peter D.
- 出版商: CRC
- 出版日期: 2021-09-30
- 售價: $2,420
- 貴賓價: 9.5 折 $2,299
- 語言: 英文
- 頁數: 592
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1032177152
- ISBN-13: 9781032177151
-
相關分類:
機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
商品描述
An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods.
The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples.
The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities.
Features:
- Provides a comprehensive and accessible overview of applied Bayesian hierarchical modelling
- Includes many real data examples to illustrate different modelling topics
- R code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementation
- Software options and coding principles are introduced in new chapter on computing
- Programs and data sets available on the book's website
商品描述(中文翻譯)
這本書對貝葉斯層級模型及其應用進行了中級水平的探討,展示了貝葉斯方法在涉及相關單位或變數集合的推斷數據集中的優勢,以及在參數可以被視為隨機集合的方法。通過示範數據分析和對統計計算的關注,本書促進了貝葉斯層級方法的實際應用。
新版本是書籍《應用貝葉斯層級方法》的修訂版。它仍然專注於應用建模和數據分析,但現在完全使用基於 R 的貝葉斯計算選項。它更新了關於因果效應回歸的新章節,以及一個關於計算選項和策略的章節。後者章節特別重要,因為最近在貝葉斯計算和估計方面的進展,包括 rjags 和 rstan 的開發。整本書也進行了更新,增加了新的例子。
這些例子利用並展示了 R 計算環境的更廣泛優勢,同時允許讀者探索替代的似然假設、回歸結構和先驗密度的假設。
特色:
- 提供了應用貝葉斯層級建模的全面且易於理解的概述
- 包含許多真實數據示例,以說明不同的建模主題
- 書中整合了 R 代碼(基於 rjags、jagsUI、R2OpenBUGS 和 rstan),強調實施
- 在新的計算章節中介紹了軟體選項和編碼原則
- 書籍網站上提供程序和數據集
作者簡介
Peter Congdon is Research Professor in Quantitative Geography and Health Statistics at Queen Mary, University of London.
作者簡介(中文翻譯)
彼得·康登是倫敦大學瑪麗女王學院的定量地理與健康統計研究教授。