Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications

Stasinopoulos, Mikis D., Kneib, Thomas, Klein, Nadja

  • 出版商: Cambridge
  • 出版日期: 2024-02-29
  • 售價: $2,780
  • 貴賓價: 9.5$2,641
  • 語言: 英文
  • 頁數: 306
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1009410067
  • ISBN-13: 9781009410069
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

An emerging field in statistics, distributional regression facilitates the modelling of the complete conditional distribution, rather than just the mean. This book introduces generalized additive models for location, scale and shape (GAMLSS) - one of the most important classes of distributional regression. Taking a broad perspective, the authors consider penalized likelihood inference, Bayesian inference, and boosting as potential ways of estimating models and illustrate their usage in complex applications. Written by the international team who developed GAMLSS, the text's focus on practical questions and problems sets it apart. Case studies demonstrate how researchers in statistics and other data-rich disciplines can use the model in their work, exploring examples ranging from fetal ultrasounds to social media performance metrics. The R code and data sets for the case studies are available on the book's companion website, allowing for replication and further study.

商品描述(中文翻譯)

分布回歸是統計學中一個新興的領域,它可以對完整的條件分布進行建模,而不僅僅是均值。本書介紹了廣義加法模型用於位置、尺度和形狀(GAMLSS)的概念,這是分布回歸中最重要的一類模型。作者從廣泛的角度考慮了懲罰最大概似估計、貝葉斯估計和提升法作為估計模型的潛在方法,並在複雜應用中展示了它們的使用。本書由GAMLSS的國際團隊撰寫,其專注於實際問題和問題,使其與眾不同。案例研究展示了統計學和其他數據豐富學科的研究人員如何在他們的工作中使用這個模型,涵蓋了從胎兒超聲到社交媒體表現指標等各種例子。案例研究的R代碼和數據集可在本書的附屬網站上獲得,以便進行複製和進一步研究。