Mathematical Pictures at a Data Science Exhibition (Paperback)
Foucart, Simon
- 出版商: Cambridge
- 出版日期: 2022-04-28
- 售價: $950
- 貴賓價: 9.8 折 $931
- 語言: 英文
- 頁數: 350
- 裝訂: Quality Paper - also called trade paper
- ISBN: 100900185X
- ISBN-13: 9781009001854
-
相關分類:
Data Science
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,188Fedora 11 and Red Hat Enterprise Linux Bible (Paperback)
-
$1,410$1,340 -
$320$250 -
$505情感分析 : 挖掘觀點、情感和情緒 (Sentiment Analysis: Mining Opinions, Sentiments, and Emotions)
-
$600$540 -
$352基於深度學習的自然語言處理/智能科學與技術叢書
-
$267圖像工程 (下冊) : 圖像理解, 4/e
-
$403Python 函數式編程, 2/e (Functional Python Programming: Discover the power of functional programming, generator functions, lazy evaluation, the built-in itertools library, and monads, 2/e)
-
$750$675 -
$420$378 -
$600$468 -
$648$616 -
$407金融中的人工智能
-
$250IT項目經理進階之道
-
$954$906 -
$857游戲設計夢工廠, 4/e
-
$407樂高EV3機器人初級教程(第二版)
-
$599$569 -
$774$735 -
$714$678 -
$607Python 數據清洗
-
$556圖機器學習
-
$301邊緣計算技術與應用
-
$403概率數據結構與算法:面向大數據應用
-
$305Python 智能優化算法:從原理到代碼實現與應用
相關主題
商品描述
This text provides deep and comprehensive coverage of the mathematical background for data science, including machine learning, optimal recovery, compressed sensing, optimization, and neural networks. In the past few decades, heuristic methods adopted by big tech companies have complemented existing scientific disciplines to form the new field of Data Science. This text embarks the readers on an engaging itinerary through the theory supporting the field. Altogether, twenty-seven lecture-length chapters with exercises provide all the details necessary for a solid understanding of key topics in data science. While the book covers standard material on machine learning and optimization, it also includes distinctive presentations of topics such as reproducing kernel Hilbert spaces, spectral clustering, optimal recovery, compressed sensing, group testing, and applications of semidefinite programming. Students and data scientists with less mathematical background will appreciate the appendices that provide more background on some of the more abstract concepts.
商品描述(中文翻譯)
本書提供了深入且全面的數學背景知識,適用於資料科學中的機器學習、最佳恢復、壓縮感知、優化和神經網絡等領域。在過去的幾十年中,大型科技公司採用的啟發式方法已經補充了現有的科學學科,形成了新興的資料科學領域。本書帶領讀者踏上一段引人入勝的旅程,深入探討支持該領域的理論。全書共有二十七個講座長度的章節,並附有練習題,提供了所有必要的細節,以確保對資料科學的關鍵主題有扎實的理解。雖然本書涵蓋了機器學習和優化的標準內容,但還包括了獨特的主題介紹,如再生核希爾伯特空間、頻譜聚類、最佳恢復、壓縮感知、群體測試以及半定規劃的應用。對於數學背景較少的學生和資料科學家來說,附錄提供了更多關於一些抽象概念的背景知識,這將受到他們的讚賞。